TY - JOUR A1 - Thai, Chien H. A1 - Ferreira, A.J.M. A1 - Bordas, Stéphane Pierre Alain A1 - Rabczuk, Timon A1 - Nguyen-Xuan, Hung T1 - Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory JF - European Journal of Mechanics N2 - Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 89 EP - 108 ER - TY - JOUR A1 - Nguyen-Xuan, Hung A1 - Nguyen, Hiep Vinh A1 - Bordas, Stéphane Pierre Alain A1 - Rabczuk, Timon A1 - Duflot, Marc T1 - A cell-based smoothed finite element method for three dimensional solid structures JF - KSCE Journal of Civil Engineering N2 - This paper extends further the strain smoothing technique in finite elements to 8-noded hexahedral elements (CS-FEM-H8). The idea behind the present method is similar to the cell-based smoothed 4-noded quadrilateral finite elements (CS-FEM-Q4). In CSFEM, the smoothing domains are created based on elements, and each element can be further subdivided into 1 or several smoothing cells. It is observed that: 1) The CS-FEM using a single smoothing cell can produce higher stress accuracy, but insufficient rank and poor displacement accuracy; 2) The CS-FEM using several smoothing cells has proper rank, good displacement accuracy, but lower stress accuracy, especially for nearly incompressible and bending dominant problems. We therefore propose 1) an extension of strain smoothing to 8-noded hexahedral elements and 2) an alternative CS-FEM form, which associates the single smoothing cell issue with multi-smoothing cell one via a stabilization technique. Several numerical examples are provided to show the reliability and accuracy of the present formulation. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 U6 - http://dx.doi.org/10.1007/s12205-012-1515-7 SP - 1230 EP - 1242 ER - TY - JOUR A1 - Chen, Lei A1 - Nguyen-Thanh, Nhon A1 - Nguyen-Xuan, Hung A1 - Rabczuk, Timon A1 - Bordas, Stéphane Pierre Alain A1 - Limbert, Georges T1 - Explicit finite deformation analysis of isogeometric membranes JF - Computer Methods in Applied Mechanics and Engineering N2 - Explicit finite deformation analysis of isogeometric membranes KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 104 EP - 130 ER -