TY - CHAP A1 - Wellmann Jelic, Andres A1 - Baitsch, Matthias A1 - Hartmann, Dietrich T1 - Distributed computing of failure probabilities for structures in civil engineering N2 - In this contribution the software design and implementation of an analysis server for the computation of failure probabilities in structural engineering is presented. The structures considered are described in terms of an equivalent Finite Element model, the stochastic properties, like e.g. the scatter of the material behavior or the incoming load, are represented using suitable random variables. Within the software framework, a Client-Server-Architecture has been implemented, employing the middleware CORBA for the communication between the distributed modules. The analysis server offers the possibility to compute failure probabilities for stochastically defined structures. Therefore, several different approximation (FORM, SORM) and simulation methods (Monte Carlo Simulation and Importance Sampling) have been implemented. This paper closes in showing several examples computed on the analysis server. KW - Konzipieren KW - Bauwerk KW - Verteiltes System KW - Fehler KW - Stochastik Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1030 ER - TY - THES A1 - Schorling, York T1 - Beitrag zur Stabilitätsuntersuchung von Strukturen mit räumlich korrelierten geometrischen Imperfektionen N2 - Für geometrisch imperfekte Strukturen wird die Versagenswahrscheinlichkeit bezüglich Stabilitätskriterien bestimmt. Eine probabilistische Beschreibung der geometrischen Imperfektionen erfolgt mit skalaren ortsdiskretisierten Zufallsfeldern. Die Stabilitätsberechnungen werden mit der Finite Elemente Methode durchgeführt. Ausgangspunkt der Berechnung ist eine systematische Formulierung probabilistisch gewichteter Imperfektionsformen durch eine Eigenwertzerlegung der Kovarianzmatrix. Wenn mit einer strukturmechanisch orientierten Sensitivitätsanalyse ein Unterraum zur näherungsweisen Beschreibung des probabilistischen Strukturverhaltens gefunden wird, kann die Versagenswahrscheinlichkeit numerisch sehr effizient durch ein Interaktionsmodell bestimmt werden. Es zeigte sich, daß dies genau dann möglich ist, wenn die Beulform merklich im Imperfektionsfeld enthalten ist. Die Imperfektionsform am Bemessungspunkt entspricht dann, unabhängig vom Lastniveau, gerade der Beulform. Wenn die Beulform im Imperfektionsfeld einen untergeordneten Beitrag liefert, erscheint eine Reduktion des stochastischen Problems auf wenige Zufallsvariablen dagegen nicht möglich. N2 - The thesis presents a concept for reliability analysis of geometrical imperfect structures with respect to static stability criteria. The geometrical imperfections are modeled as Gaussian random fields. The structural analysis is based on the Finite Element Method. A spectral decomposition of the covariance matrix, enables to formulate independent probabilistically weighted imperfections shapes, which may be analyzed by means of structural mechanics. Reliability calculations with procedures such as the response surface method require the reduction of the random variable space. Examples proved that a suitable definition of a subspace of the random variable space is possible, if the buckling shapes are sufficiently included in the random field. In this case the imperfection shape is-independent of the load level-identical to the buckling shape. In contrast if the buckling shapes are not included in the random field, the structure shows a wide banded behavior. Consequently a reduction of the variable space and the application of an interaction models is then not feasible for the determination of the failure probabilty. KW - Tragwerk KW - Formabweichung KW - Stabilität KW - Beulung KW - Zuverlässigkeit KW - Finite-Elemente-Methode KW - Imperfektion KW - Berechnung KW - Stochastik KW - Zufallsfeld Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20040216-317 ER -