TY - JOUR A1 - Kraaz, Luise A1 - Koop, Maria A1 - Wunsch, Maximilian A1 - Plank-Wiedenbeck, Uwe T1 - The Scaling Potential of Experimental Knowledge in the Case of the Bauhaus.MobilityLab, Erfurt (Germany) JF - Urban Planning N2 - Real-world labs hold the potential to catalyse rapid urban transformations through real-world experimentation. Characterised by a rather radical, responsive, and location-specific nature, real-world labs face constraints in the scaling of experimental knowledge. To make a significant contribution to urban transformation, the produced knowledge must go beyond the level of a building, street, or small district where real-world experiments are conducted. Thus, a conflict arises between experimental boundaries and the stimulation of broader implications. The challenges of scaling experimental knowledge have been recognised as a problem, but remain largely unexplained. Based on this, the article will discuss the applicability of the “typology of amplification processes” by Lam et al. (2020) to explore and evaluate the potential of scaling experimental knowledge from real-world labs. The application of the typology is exemplified in the case of the Bauhaus.MobilityLab. The Bauhaus.MobilityLab takes a unique approach by testing and developing cross-sectoral mobility, energy, and logistics solutions with a distinct focus on scaling knowledge and innovation. For this case study, different qualitative research techniques are combined according to “within-method triangulation” and synthesised in a strengths, weaknesses, opportunities, and threats (SWOT) analysis. The analysis of the Bauhaus.MobilityLab proves that the “typology of amplification processes” is useful as a systematic approach to identifying and evaluating the potential of scaling experimental knowledge. KW - Stadtplanung KW - Infrastrukturplanung KW - Transformation KW - Reallabor KW - Amplifikationsprozesse KW - Bauhaus.MobilityLab KW - experimentelles Wissen KW - Realexperimente KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230509-63633 UR - https://www.cogitatiopress.com/urbanplanning/article/view/5329 VL - 2022 IS - Volume 7, Issue 3 SP - 274 EP - 284 ER - TY - JOUR A1 - Aicher, Andreas A1 - Börmel, Melanie A1 - Londong, Jörg A1 - Beier, Silvio T1 - Vertical green system for gray water treatment: Analysis of the VertiKKA-module in a field test JF - Frontiers in Environmental Science N2 - This work presents a modular Vertical Green System (VGS) for gray water treatment, developed at the Bauhaus-Universität Weimar. The concept was transformed into a field study with four modules built and tested with synthetic gray water. Each module set contains a small and larger module with the same treatment substrate and was fed hourly. A combination of lightweight structural material and biochar of agricultural residues and wood chips was used as the treatment substrate. In this article, we present the first 18 weeks of operation. Regarding the treatment efficiency, the parameters chemical oxygen demand (COD), total phosphorous (TP), ortho-phosphate (ortho-P), total bound nitrogen (TNb), ammonium nitrogen (NH4-N), and nitrate nitrogen (NO3-N) were analyzed and are presented in this work. The results of the modules with agricultural residues are promising. Up to 92% COD reduction is stated in the data. The phosphate and nitrogen fractions are reduced significantly in these modules. By contrast, the modules with wood chips reduce only 67% of the incoming COD and respectively less regarding phosphates and the nitrogen fraction. KW - Grauwasser KW - Abwassertechnologie KW - vertical green system KW - grey water treatment KW - urban heat island effect KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230124-48840 UR - https://www.frontiersin.org/articles/10.3389/fenvs.2022.976005/full VL - 2022 IS - Volume 10 (2022), article 976005 SP - 1 EP - 7 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Alalade, Muyiwa A1 - Reichert, Ina A1 - Köhn, Daniel A1 - Wuttke, Frank A1 - Lahmer, Tom ED - Qu, Chunxu ED - Gao, Chunxu ED - Zhang, Rui ED - Jia, Ziguang ED - Li, Jiaxiang T1 - A Cyclic Multi-Stage Implementation of the Full-Waveform Inversion for the Identification of Anomalies in Dams JF - Infrastructures N2 - For the safe and efficient operation of dams, frequent monitoring and maintenance are required. These are usually expensive, time consuming, and cumbersome. To alleviate these issues, we propose applying a wave-based scheme for the location and quantification of damages in dams. To obtain high-resolution “interpretable” images of the damaged regions, we drew inspiration from non-linear full-multigrid methods for inverse problems and applied a new cyclic multi-stage full-waveform inversion (FWI) scheme. Our approach is less susceptible to the stability issues faced by the standard FWI scheme when dealing with ill-posed problems. In this paper, we first selected an optimal acquisition setup and then applied synthetic data to demonstrate the capability of our approach in identifying a series of anomalies in dams by a mixture of reflection and transmission tomography. The results had sufficient robustness, showing the prospects of application in the field of non-destructive testing of dams. KW - Damm KW - Defekt KW - inverse analysis KW - damage identification KW - full-waveform inversion KW - dams KW - wave propagation KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221201-48396 UR - https://www.mdpi.com/2412-3811/7/12/161 VL - 2022 IS - Volume 7, issue 12, article 161 PB - MDPI CY - Basel ER - TY - JOUR A1 - Arnold, Robert A1 - Kraus, Matthias ED - Pham, Duc T1 - On the nonstationary identification of climate-influenced loads for the semi-probabilistic approach using measured and projected data JF - Cogent Engineering N2 - A safe and economic structural design based on the semi-probabilistic concept requires statistically representative safety elements, such as characteristic values, design values, and partial safety factors. Regarding climate loads, the safety levels of current design codes strongly reflect experiences based on former measurements and investigations assuming stationary conditions, i.e. involving constant frequencies and intensities. However, due to climate change, occurrence of corresponding extreme weather events is expected to alter in the future influencing the reliability and safety of structures and their components. Based on established approaches, a systematically refined data-driven methodology for the determination of design parameters considering nonstationarity as well as standardized targets of structural reliability or safety, respectively, is therefore proposed. The presented procedure picks up fundamentals of European standardization and extends them with respect to nonstationarity by applying a shifting time window method. Taking projected snow loads into account, the application of the method is exemplarily demonstrated and various influencing parameters are discussed. KW - Reliabilität KW - Extreme value distribution KW - climate loads KW - nonstationarity KW - semi-probabilistic concept KW - First Order Reliability Method KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221117-47363 UR - https://doi.org/10.1080/23311916.2022.2143061 VL - 2022 IS - Volume 9, issue 1, article 2143061 SP - 1 EP - 26 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Lutolli, Blerim T1 - A Review of Domed Cities and Architecture: Past, Present and Future JF - Future cities and environment N2 - The goal of architecture is changing in response to the expanding role of cities, rapid urbanization, and transformation under changing economic, environmental, social, and demographic factors. As cities increased in the early modern era, overcrowding, urbanization, and pollution conditions led reformers to consider the future shape of the cities. One of the most critical topics in contemporary architecture is the subject of the future concepts of living. In most cases, domed cities, as a future concept of living, are rarely considered, and they are used chiefly as “utopian” visions in the discourse of future ways of living. This paper highlights the reviews of domed cities to deepen the understanding of the idea in practice, like its approach in terms of architecture. The main aim of this paper is to provide a broad overview for domed cities in the face of pollution as one of the main concerns in many European cities. As a result, the significance of the reviews of the existing projects is focused on their conceptual quality. This review will pave the way for further studies in terms of future developments in the realm of domed cities. In this paper, the city of Celje, one of the most polluted cities in Slovenia, is taken as a case study for considering the concept of Dome incorporated due to the lack of accessible literature on the topic. This review’s primary contribution is to allow architects to explore a broad spectrum of innovation by comparing today’s achievable statuses against the possibilities generated by domed cities. As a result of this study, the concept of living under the Dome remains to be developed in theory and practice. The current challenging climatic situation will accelerate the evolution of these concepts, resulting in the formation of new typologies, which are a requirement for humanity. KW - Architektur KW - Wohnform KW - Umweltverschutzung KW - Domed Cities KW - Architecture KW - Concept of Living KW - Architecture Pollution KW - Kuppelstadt KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221103-47335 UR - https://futurecitiesandenvironment.com/articles/10.5334/fce.154/ VL - 2022 IS - Volume 8, issue 1 SP - 1 EP - 9 PB - Ubiquity Press Limited CY - London ER - TY - JOUR A1 - Chowdhury, Sharmistha A1 - Kraus, Matthias T1 - Design-related reassessment of structures integrating Bayesian updating of model safety factors JF - Results in Engineering N2 - In the semi-probabilistic approach of structural design, the partial safety factors are defined by considering some degree of uncertainties to actions and resistance, associated with the parameters’ stochastic nature. However, uncertainties for individual structures can be better examined by incorporating measurement data provided by sensors from an installed health monitoring scheme. In this context, the current study proposes an approach to revise the partial safety factor for existing structures on the action side, γE by integrating Bayesian model updating. A simple numerical example of a beam-like structure with artificially generated measurement data is used such that the influence of different sensor setups and data uncertainties on revising the safety factors can be investigated. It is revealed that the health monitoring system can reassess the current capacity reserve of the structure by updating the design safety factors, resulting in a better life cycle assessment of structures. The outcome is furthermore verified by analysing a real life small railway steel bridge ensuring the applicability of the proposed method to practical applications. KW - Lebenszyklus KW - Sicherheitsfaktor KW - Structural health monitoring KW - Safety factor KW - Life cycle assessment KW - Uncertainty KW - Bayesian parameter update KW - Ungewissheit KW - Umweltbilanz KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221028-47294 UR - https://www.sciencedirect.com/science/article/pii/S2590123022002304?via%3Dihub VL - 2022 IS - Volume 16, article 100560 SP - 1 EP - 1 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Chowdhury, Sharmistha A1 - Zabel, Volkmar T1 - Influence of loading sequence on wind induced fatigue assessment of bolts in TV-tower connection block JF - Results in Engineering N2 - Bolted connections are widely employed in structures like transmission poles, wind turbines, and television (TV) towers. The behaviour of bolted connections is often complex and plays a significant role in the overall dynamic characteristics of the structure. The goal of this work is to conduct a fatigue lifecycle assessment of such a bolted connection block of a 193 m tall TV tower, for which 205 days of real measurement data have been obtained from the installed monitoring devices. Based on the recorded data, the best-fit stochastic wind distribution for 50 years, the decisive wind action, and the locations to carry out the fatigue analysis have been decided. A 3D beam model of the entire tower is developed to extract the nodal forces corresponding to the connection block location under various mean wind speeds, which is later coupled with a detailed complex finite element model of the connection block, with over three million degrees of freedom, for acquiring stress histories on some pre-selected bolts. The random stress histories are analysed using the rainflow counting algorithm (RCA) and the damage is estimated using Palmgren-Miner's damage accumulation law. A modification is proposed to integrate the loading sequence effect into the RCA, which otherwise is ignored, and the differences between the two RCAs are investigated in terms of the accumulated damage. KW - Schadensakkumulation KW - Lebenszyklus KW - Fatigue life KW - Damage accumulation KW - Wind load KW - Rainflow counting algorithm KW - Loading sequence KW - Windlast KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221028-47303 UR - https://www.sciencedirect.com/science/article/pii/S2590123022002730?via%3Dihub VL - 2022 IS - Volume 16, article 100603 SP - 1 EP - 18 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Isik, Ercan T1 - A Comparative Probabilistic Seismic Hazard Analysis for Eastern Turkey (Bitlis) Based on Updated Hazard Map and Its Effect on Regular RC Structures JF - Buildings N2 - Determining the earthquake hazard of any settlement is one of the primary studies for reducing earthquake damage. Therefore, earthquake hazard maps used for this purpose must be renewed over time. Turkey Earthquake Hazard Map has been used instead of Turkey Earthquake Zones Map since 2019. A probabilistic seismic hazard was performed by using these last two maps and different attenuation relationships for Bitlis Province (Eastern Turkey) were located in the Lake Van Basin, which has a high seismic risk. The earthquake parameters were determined by considering all districts and neighborhoods in the province. Probabilistic seismic hazard analyses were carried out for these settlements using seismic sources and four different attenuation relationships. The obtained values are compared with the design spectrum stated in the last two earthquake maps. Significant differences exist between the design spectrum obtained according to the different exceedance probabilities. In this study, adaptive pushover analyses of sample-reinforced concrete buildings were performed using the design ground motion level. Structural analyses were carried out using three different design spectra, as given in the last two seismic design codes and the mean spectrum obtained from attenuation relationships. Different design spectra significantly change the target displacements predicted for the performance levels of the buildings. KW - Erbeben KW - Schwellenwert KW - Seismic risk KW - Adaptive Pushover KW - Design Spectra KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221028-47283 UR - https://www.mdpi.com/2075-5309/12/10/1573 VL - 2022 IS - Volume 12, issue 10, article 1573 SP - 1 EP - 19 PB - MDPI CY - Basel ER - TY - JOUR A1 - Maiwald, Holger A1 - Schwarz, Jochen A1 - Kaufmann, Christian A1 - Langhammer, Tobias A1 - Golz, Sebastian A1 - Wehner, Theresa T1 - Innovative Vulnerability and Risk Assessment of Urban Areas against Flood Events: Prognosis of Structural Damage with a New Approach Considering Flow Velocity JF - Water N2 - The floods in 2002 and 2013, as well as the recent flood of 2021, caused billions Euros worth of property damage in Germany. The aim of the project Innovative Vulnerability and Risk Assessment of Urban Areas against Flood Events (INNOVARU) involved the development of a practicable flood damage model that enables realistic damage statements for the residential building stock. In addition to the determination of local flood risks, it also takes into account the vulnerability of individual buildings and allows for the prognosis of structural damage. In this paper, we discuss an improved method for the prognosis of structural damage due to flood impact. Detailed correlations between inundation level and flow velocities depending on the vulnerability of the building types, as well as the number of storeys, are considered. Because reliable damage data from events with high flow velocities were not available, an innovative approach was adopted to cover a wide range of flow velocities. The proposed approach combines comprehensive damage data collected after the 2002 flood in Germany with damage data of the 2011 Tohoku earthquake tsunami in Japan. The application of the developed methods enables a reliable reinterpretation of the structural damage caused by the August flood of 2002 in six study areas in the Free State of Saxony. KW - Bauschaden KW - Hochwasser KW - Hochwasserschadensmodell KW - Strukturschaden KW - Strömungsgeschwindigkeit KW - Schadensprognose KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221012-47254 UR - https://www.mdpi.com/2073-4441/14/18/2793 VL - 2022 IS - Volume 14, issue 18, article 2793 SP - 1 EP - 28 PB - MDPI CY - Basel ER - TY - JOUR A1 - Mehling, Simon A1 - Schnabel, Tobias A1 - Londong, Jörg T1 - Investigation on Energetic Efficiency of Reactor Systems for Oxidation of Micro-Pollutants by Immobilized Active Titanium Dioxide Photocatalysis JF - Water N2 - In this work, the degradation performance for the photocatalytic oxidation of eight micropollutants (amisulpride, benzotriazole, candesartan, carbamazepine, diclofenac, gabapentin, methlybenzotriazole, and metoprolol) within real secondary effluent was investigated using three different reactor designs. For all reactor types, the influence of irradiation power on its reaction rate and energetic efficiency was investigated. Flat cell and batch reactor showed almost similar substance specific degradation behavior. Within the immersion rotary body reactor, benzotriazole and methylbenzotriazole showed a significantly lower degradation affinity. The flat cell reactor achieved the highest mean degradation rate, with half time values ranging from 5 to 64 min with a mean of 18 min, due to its high catalysts surface to hydraulic volume ratio. The EE/O values were calculated for all micro-pollutants as well as the mean degradation rate constant of each experimental step. The lowest substance specific energy per order (EE/O) values of 5 kWh/m3 were measured for benzotriazole within the batch reactor. The batch reactor also reached the lowest mean values (11.8–15.9 kWh/m3) followed by the flat cell reactor (21.0–37.0 kWh/m3) and immersion rotary body reactor (23.9–41.0 kWh/m3). Catalyst arrangement and irradiation power were identified as major influences on the energetic performance of the reactors. Low radiation intensities as well as the use of submerged catalyst arrangement allowed a reduction in energy demand by a factor of 3–4. A treatment according to existing treatment goals of wastewater treatment plants (80% total degradation) was achieved using the batch reactor with a calculated energy demand of 7000 Wh/m3. KW - Fotokatalyse KW - Abwasserreinigung KW - photocatalysis KW - micro-pollutant treatment KW - titanium dioxid KW - reactor design KW - energy per order KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220912-47130 UR - https://www.mdpi.com/2073-4441/14/17/2681 VL - 2022 IS - Volume 14, issue 7, article 2681 SP - 1 EP - 15 PB - MDPI CY - Basel ER -