TY - JOUR A1 - Zabel, Volkmar T1 - An application of discrete wavelet analysis and connection coefficients to parametric system identification JF - Structural Health Monitoring N2 - An application of discrete wavelet analysis and connection coefficients to parametric system identification KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2005 SP - 5 EP - 18 ER - TY - JOUR A1 - Zabel, Volkmar A1 - Brehm, Maik T1 - Das dynamische Verhalten von Eisenbahnbrücken mit kurzer Spannweite - numerische und experimentelle Untersuchungen JF - Bauingenieur, D-A-CH-Mitteilungsblatt N2 - Das dynamische Verhalten von Eisenbahnbrücken mit kurzer Spannweite - numerische und experimentelle Untersuchungen KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2008 ER - TY - JOUR A1 - Brehm, Maik A1 - Zabel, Volkmar A1 - Bucher, Christian T1 - An automatic mode pairing strategy using an enhanced modal assurance citerion based on modal strain energies JF - Journal of Sound and Vibration N2 - In the context of finite element model updating using output-only vibration test data, natural frequencies and mode shapes are used as validation criteria. Consequently, the correct pairing of experimentally obtained and numerically derived natural frequencies and mode shapes is important. In many cases, only limited spatial information is available and noise is present in the measurements. Therefore, the automatic selection of the most likely numerical mode shape corresponding to a particular experimentally identified mode shape can be a difficult task. The most common criterion for indicating corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases and is not reliable for automatic approaches. In this paper, the purely mathematical modal assurance criterion will be enhanced by additional physical information from the numerical model in terms of modal strain energies. A numerical example and a benchmark study with experimental data are presented to show the advantages of the proposed energy-based criterion in comparison to the traditional modal assurance criterion. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2010 U6 - http://dx.doi.org/10.1016/j.jsv.2010.07.006 SP - 5375 EP - 5392 ER - TY - JOUR A1 - Keitel, Holger A1 - Karaki, Ghada A1 - Lahmer, Tom A1 - Nikulla, Susanne A1 - Zabel, Volkmar T1 - Evaluation of coupled partial models in structural engineering using graph theory and sensitivity analysis JF - Engineering structures N2 - Evaluation of coupled partial models in structural engineering using graph theory and sensitivity analysis KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2011 SP - 3726 EP - 3736 ER - TY - JOUR A1 - Brehm, Maik A1 - Zabel, Volkmar A1 - Bucher, Christian T1 - Optimal reference sensor positions for applications in model updating using output-only vibration test data based on random excitation: Part 2 - improved search strategy and experimental case study JF - Mechanical Systems and Signal Processing N2 - Optimal reference sensor positions for applications in model updating using output-only vibration test data based on random excitation: Part 2 - improved search strategy and experimental case study KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2011 ER - TY - JOUR A1 - Luu, M. A1 - Martinez-Rodrigo, M.D. A1 - Zabel, Volkmar A1 - Könke, Carsten T1 - H∞ optimization of fluid viscous dampers for reducing vibrations of high-speed railway bridges JF - Journal of Sound and Vibration N2 - H∞ optimization of fluid viscous dampers for reducing vibrations of high-speed railway bridges KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 2421 EP - 2442 ER - TY - JOUR A1 - Chowdhury, Sharmistha A1 - Zabel, Volkmar T1 - Influence of loading sequence on wind induced fatigue assessment of bolts in TV-tower connection block JF - Results in Engineering N2 - Bolted connections are widely employed in structures like transmission poles, wind turbines, and television (TV) towers. The behaviour of bolted connections is often complex and plays a significant role in the overall dynamic characteristics of the structure. The goal of this work is to conduct a fatigue lifecycle assessment of such a bolted connection block of a 193 m tall TV tower, for which 205 days of real measurement data have been obtained from the installed monitoring devices. Based on the recorded data, the best-fit stochastic wind distribution for 50 years, the decisive wind action, and the locations to carry out the fatigue analysis have been decided. A 3D beam model of the entire tower is developed to extract the nodal forces corresponding to the connection block location under various mean wind speeds, which is later coupled with a detailed complex finite element model of the connection block, with over three million degrees of freedom, for acquiring stress histories on some pre-selected bolts. The random stress histories are analysed using the rainflow counting algorithm (RCA) and the damage is estimated using Palmgren-Miner's damage accumulation law. A modification is proposed to integrate the loading sequence effect into the RCA, which otherwise is ignored, and the differences between the two RCAs are investigated in terms of the accumulated damage. KW - Schadensakkumulation KW - Lebenszyklus KW - Fatigue life KW - Damage accumulation KW - Wind load KW - Rainflow counting algorithm KW - Loading sequence KW - Windlast KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221028-47303 UR - https://www.sciencedirect.com/science/article/pii/S2590123022002730?via%3Dihub VL - 2022 IS - Volume 16, article 100603 SP - 1 EP - 18 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Abdelnour, Mena A1 - Zabel, Volkmar T1 - Modal identification of structures with a dynamic behaviour characterised by global and local modes at close frequencies JF - Acta Mechanica N2 - Identification of modal parameters of a space frame structure is a complex assignment due to a large number of degrees of freedom, close natural frequencies, and different vibrating mechanisms. Research has been carried out on the modal identification of rather simple truss structures. So far, less attention has been given to complex three-dimensional truss structures. This work develops a vibration-based methodology for determining modal information of three-dimensional space truss structures. The method uses a relatively complex space truss structure for its verification. Numerical modelling of the system gives modal information about the expected vibration behaviour. The identification process involves closely spaced modes that are characterised by local and global vibration mechanisms. To distinguish between local and global vibrations of the system, modal strain energies are used as an indicator. The experimental validation, which incorporated a modal analysis employing the stochastic subspace identification method, has confirmed that considering relatively high model orders is required to identify specific mode shapes. Especially in the case of the determination of local deformation modes of space truss members, higher model orders have to be taken into account than in the modal identification of most other types of structures. KW - Fachwerkbau KW - Holzkonstruktion KW - Schwingung KW - three-dimensional truss structures KW - vibration-based methodology KW - numerical modelling Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230525-63822 UR - https://link.springer.com/article/10.1007/s00707-023-03598-z VL - 2023 SP - 1 EP - 21 PB - Springer CY - Wien ER -