TY - CHAP A1 - Brehm, Maik A1 - Zabel, Volkmar A1 - Bucher, Christian A1 - Ribeiro, D. ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - AN AUTOMATIC MODE SELECTION STRATEGY FOR MODEL UPDATING USING THE MODAL ASSURANCE CRITERION AND MODAL STRAIN ENERGIES N2 - In the context of finite element model updating using vibration test data, natural frequencies and mode shapes are used as validation criteria. Consequently, the order of natural frequencies and mode shapes is important. As only limited spatial information is available and noise is present in the measurements, the automatic selection of the most likely numerical mode shape corresponding to a measured mode shape is a difficult task. The most common criterion to indicate corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases. In this paper, the pure mathematical modal assurance criterion will be enhanced by additional physical information of the numerical model in terms of modal strain energies. A numerical example and a benchmark study with real measured data are presented to show the advantages of the enhanced energy based criterion in comparison to the traditional modal assurance criterion. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28330 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Bombasaro, Emanuel A1 - Bucher, Christian ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - INVESTIGATION OF MODELING ERRORS OF DIFFERENT RANDOM FIELD BASED WIND LOAD FORMULATIONS N2 - In this paper the influence of changes in the mean wind velocity, the wind profile power-law coefficient, the drag coefficient of the terrain and the structural stiffness are investigated on different complex structural models. This paper gives a short introduction to wind profile models and to the approach by Davenport A. G. to compute the structural reaction of wind induced vibrations. Firstly with help of a simple example (a skyscraper) this approach is shown. Using this simple example gives the reader the possibility to study the variance differences when changing one of the above mentioned parameters on this very easy example and see the influence of different complex structural models on the result. Furthermore an approach for estimation of the needed discretization level is given. With the help of this knowledge the structural model design methodology can be base on deeper understanding of the different behavior of the single models. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28318 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER -