TY - CHAP A1 - Alda, Sascha A1 - Cremers, Armin B. A1 - Bilek, Jochen T1 - Support of Collaborative Structural Design Processes through the Integration of Peer-to-Peer and Multiagent Architectures N2 - Structural engineering projects are increasingly organized in networked cooperations due to a permanently enlarged competition pressure and a high degree of complexity while performing the concurrent design activities. Software that intends to support such collaborative structural design processes implicates enormous requirements. In the course of our common research work, we analyzed the pros and cons of the application of both the peer-to-peer (University of Bonn) and multiagent architecture style (University of Bochum) within the field of collaborative structural design. In this paper, we join the benefits of both architecture styles in an integrated conceptual approach. We demonstrate the surplus value of the integrated multiagent–peer-to-peer approach by means of an example scenario in which several structural engineers are co-operatively designing the basic structural elements of an arched bridge, applying heterogeneous CAD systems. KW - Ingenieurbau KW - Verteiltes System KW - Planungsprozess KW - Modellierung KW - Mehragentensystem Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1481 ER - TY - CHAP A1 - Eslimy-Isfahany, S. H. R. A1 - Pegels, Georg T1 - Net-distributed Co-operation Including Developing Countries, Practical Case Study - Iran N2 - The scientific transfer of key technology features to developing countries, together with adequate competence, localisation and adaptation, is the primary purpose of the proposed investigation. It is evident that introducing high-level CAD design and detailing will improve the planning process in developing countries. Successful utilization of applied information technology for the planning process, however, depends on the user-interface of individual software. Therefore, to open the great opportunity embedded in CAD software for clients globally, the language and character-set barrier of traditional user-interfaces must be overcome. A proposal for a research program is given here to address such issue in favour of global civil engineering. KW - Ingenieurbau KW - Verteiltes System KW - Planungsprozess KW - Modellierung KW - Iran Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1421 ER - TY - CHAP A1 - Gebbeken, Norbert A1 - Baumhauer, Andreas A1 - Ionita, Mihai T1 - Increasing the Reliability and Performance through Automatization and Parallel Working N2 - Re-examination of the behaviour of structures can be necessary due to deterioration or changes in the traffic situation during their lifetime. The Finite Element Method (FEM) is widely used in order to accomplish numerical analysis. Considering the development of computer performance, more detailed FEM models can be analyzed, even on site, with mobile computers. To compensate the increasing amount of data needed for the model input, measures need to be taken to save time, by distributing the work. In order to provide consistency to the model, fedback data must be checked upon reception. A local wireless computer network of ultra-portable devices linked together with a computer can provide the coordination necessary for efficient parallel working. Based on a digital model consisting of all data gathered, structural modelling and numerical analysis are performed automatically. Thus, the user is released from the work that can be automatized and the time needed for the overall analysis of a structure is decreased. KW - Ingenieurbau KW - Verteiltes System KW - Planungsprozess KW - Modellierung KW - Parallelverarbeitung KW - Simulation Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1397 ER - TY - CHAP A1 - Hartmann, Dietrich A1 - Meißner, Udo F. A1 - Rueppel, Uwe T1 - Integration of Productmodel Databases into Multi-Agent Systems N2 - This paper deals with two different agent-based approaches aimed at the incorporation of complex design information into multi-agent planning systems. The first system facilitates collaborative structural design processes, the second one supports fire engineering in buildings. Both approaches are part of two different research projects that belong to the DFG1 priority program 1103 entitled “Network-based Co-operative Planning Processes in Structural Engineering“ (DFG 2000). The two approaches provide similar database wrapper agents to integrate relevant design information into two multi-agent systems: Database wrapper agents make the relevant product model data usable for further agents in the multi-agent system, independent on their physical location. Thus, database wrapper agents act as an interface between multi-agent system and heterogeneous database systems. The communication between the database wrapper agents and other requesting agents presumes a common vocabulary: a specific database ontology that maps database related message contents into database objects. Hereby, the software-wrapping technology enables the various design experts to plug in existing database systems and data resources into a specific multi-agent system easily. As a consequence, dynamic changes in the design information of large collaborative engineering projects are adequately supported. The flexible architecture of the database wrapper agent concept is demonstrated by the integration of an XML and a relational database system. KW - Ingenieurbau KW - Verteiltes System KW - Planungsprozess KW - Modellierung KW - Mehragentensystem Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1410 ER - TY - CHAP A1 - Hartmann, Ulrich C. T1 - Collaboration in AEC Design : Web-enabling Applications using Peer-to-Peer Office Communicator N2 - A market analysis conducted by Gartner Dataquest in August 2001 has shown the typical characteristics of the AEC design process. High volatility in membership of AEC design groups and members dispersed over several external offices is the common collaboration scenario. Membership is most times short lived, compared to the overall duration of the process. A technical solution has to take that into account by making joining and leaving a collaborative work group very easy. The modelling of roles of collaboration between group members must be based on a commonly understood principle like the publisher / subscriber model, where the individual that is responsible for the distribution of vital information is clear. Security issues and trust in the confidentiality of the system is a central concern for the acceptance of the system. Therefore, keeping the subset of data that will be published under the absolute control of the publisher is a must. This is not the case with server-based scenarios, sometimes even due to psychological reasons. A loosely bound Peer-to-Peer network offers advantages over a server-based solution, because of less administrative overhead and simple installation procedures. In a peer-to-peer environment, a publish/subscribe role model can be more easily implemented. The publish/subscribe model matches the way AEC processes are modelled in real world scenarios today, where legal proof of information exchange between external offices is of high importance. Workflow management systems for small to midsize companies of the AEC industry may adopt the peer-to-peer approach to collaboration in the future. Further investigations are being made on the research level (WINDS) by integrating the viewer and redlining application Collaborate! into a collaborative environment. KW - Ingenieurbau KW - Verteiltes System KW - Planungsprozess KW - Modellierung KW - Kommunikationsmodell Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1386 ER - TY - CHAP A1 - Katzenbach, Rolf A1 - Giere, Johannes T1 - Coordinating Planning Processes in AEC using an Adaptable Process Model N2 - The contribution introduces an adaptable process model to meet the special requirements of the coordination of planning activities in AEC (Architecture, Engineering, Construction). The process model is based on the concept of Coloured Petri-Nets and uses metainformation to characterize process-relevant information and to enable process-control based on the actual results of the planning. KW - Prozessmodell KW - Planungsprozess Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-946 ER - TY - CHAP A1 - König, Markus A1 - Klinger, Axel A1 - Berkhahn, Volker T1 - Structural Correctness of Planning Processes in Building Engineering N2 - The planning of projects in building engineering is a complex process which is characterized by a dynamical composition and many modifications during the definition and execution time of processes. For a computer-aided and network-based cooperation a formal description of the planning process is necessary. In the research project “Relational Process Modelling in Cooperative Building Planning” a process model is described by three parts: an organizational structure with participants, a building structure with states and a process structure with activities. This research project is part of the priority program 1103 “Network-Based Cooperative Planning Processes in Structural Engineering” promoted by the German Research Foundation (DFG). Planning processes in civil engineering can be described by workflow graphs. The process structure describes the logical planning process and can be formally defined by a bipartite graph. This structure consists of activities, transitions and relationships between activities and transitions. In order to minimize errors at execution time of a planning process a consistent and structurally correct process model must be guaranteed. This contribution considers the concept and the algorithms for checking the consistency and the correctness of the process structure. KW - Baubetrieb KW - Computerunterstütztes Verfahren KW - Planungsprozess KW - Konsistenz Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1690 ER - TY - CHAP A1 - Lehner, Karlheinz A1 - Hartmann, Dietrich T1 - Scenarios for the deployment of distributed engineering applications N2 - Although there are some good reasons to design engineering software as a stand-alone application for a single computer, there are also numerous possibilities for creating distributed engineering applications, in particular using the Internet. This paper presents some typical scenarios how engineering applications can benefit from including network capabilities. Also, some examples of Internet-based engineering applications are discussed to show how the concepts presented can be implemented. KW - Ingenieurbau KW - Verteiltes System KW - Planungsprozess KW - Modellierung KW - Internet Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1476 ER - TY - CHAP A1 - Lähr, André A1 - Bletzinger, Kai-Uwe T1 - Design of an Analysis Environment for Planning Decision Support N2 - In this contribution, the design of an analysis environment is presented, that supports an analyst to come to a decision within a gradual collaborative planning process. An analyst represents a project manager, planner or any other person, involved in the planning process. Today, planning processes are managed by several geographically distributed planners and project managers. Thus, complexity of such a process rises even more. Prediction of consequences of many planning decisions is not possible, in particular since assessment of a planning advance is not trivial. There have to be considered several viewpoints, that depend on individual perceptions. In the following, methods are presented to realize planning decision support. KW - Ingenieurbau KW - Verteiltes System KW - Planungsprozess KW - Modellierung KW - Schlussfolgern Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1370 ER - TY - CHAP A1 - Meißner, Udo F. A1 - Rueppel, Uwe A1 - Theiss, Mirko T1 - Network-Based Fire Engineering Supported by Agents N2 - Building design in Civil Engineering is characterized by the cooperation of experts in multiple disciplines. Close cooperation of engineers in different fields is the basis of high product quality, short development periods and a minimum of investment costs. For each building the engineers have to create a new fire engineering model. The consistent realization of the fire engineering model in all details has high demands on communication, collaboration and building models. Thereby, to preserve the related design models consistent to each other and compatible with the rules of fire engineering is a complex task. In addition, regulations and guidelines vary according to the building location, so the knowledge base must be integrated dynamically into the planning process. This contribution covers the integration of engineers and design models into a cooperation network on the basis of mobile agents. The distributed models of architectural design, structural planning and fire engineering are supported. These models are implemented as XML-based models which can be accessed by mobile agents for information retrieval and for processing tasks. Agents are provided to all planners, they are enabled to check up the distributed design models with the knowledge base of the fire protection regulations,. With the use of such an agent each planner is supported to check up his planning for accordance with the fire protection requirements. The fire-engineering-agent analyzes the design and detects inconsistencies by processing fire protection requirements and design model facts in a rule-based expert system. The possibility to check the planning information at an early state in the sense of compatibility to the fire protection regulations enables a comprehensive diagnosis of the design and the reduction of planning errors. KW - Ingenieurbau KW - Verteiltes System KW - Planungsprozess KW - Modellierung KW - Brandschutz KW - Mehragentensystem Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1447 ER -