TY - JOUR A1 - Jiang, Jin-Wu A1 - Zhao, Jun-Hua A1 - Zhou, K. A1 - Rabczuk, Timon T1 - Superior thermal conductivity and extremely high mechanical strength in polyethylene chains from ab initio calculation JF - Journal of Applied Physics N2 - The upper limit of the thermal conductivity and the mechanical strength are predicted for the polyethylene chain, by performing the ab initio calculation and applying the quantum mechanical non-equilibrium Green’s function approach. Specially, there are two main findings from our calculation: (1) the thermal conductivity can reach a high value of 310 Wm−1 K−1 in a 100 nm polyethylene chain at room temperature and the thermal conductivity increases with the length of the chain; (2) the Young’s modulus in the polyethylene chain is as high as 374.5 GPa, and the polyethylene chain can sustain 32.85%±0.05% (ultimate) strain before undergoing structural phase transition into gaseous ethylene. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1063/1.4729489 ER - TY - JOUR A1 - Zhao, Jun-Hua A1 - Guo, Wanlin A1 - Rabczuk, Timon T1 - An analytical molecular mechanics model for the elastic properties of crystalline polyethylene JF - Journal of Applied Physics N2 - We present an analytical model to relate the elastic properties of crystalline polyethylene based on a molecular mechanics approach. Along the polymer chains direction, the united-atom (UA) CH2-CH2 bond stretching, angle bending potentials are replaced with equivalent Euler-Bernoulli beams. Between any two polymer chains, the explicit formulae are derived for the van der Waals interaction represented by the linear springs of different stiffness. Then, the nine independent elastic constants are evaluated systematically using the formulae. The analytical model is finally validated by present united-atom molecular dynamics (MD) simulations and against available all-atom molecular dynamics results in the literature. The established analytical model provides an efficient route for mechanical characterization of crystalline polymers and related materials. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1063/1.4745035 ER - TY - JOUR A1 - Zhao, Jun-Hua A1 - Wei, Ning A1 - Fan, Z. A1 - Jiang, Jin-Wu A1 - Rabczuk, Timon T1 - Mechanical properties of three types of carbon allotropes JF - Nanotechnology N2 - Mechanical properties of three types of carbon allotropes KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Zhao, Jun-Hua A1 - Wang, L. A1 - Jiang, Jin-Wu A1 - Wang, Z. A1 - Guo, Wanlin A1 - Rabczuk, Timon T1 - A comparative study of two molecular mechanics models based on harmonic potentials JF - Journal of Applied Physics N2 - A comparative study of two molecular mechanics models based on harmonic potentials KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Jiang, Jin-Wu A1 - Zhao, Jun-Hua A1 - Rabczuk, Timon T1 - Size-Sensitive Young’s Modulus of Kinked Silicon Nanowires JF - Nanotechnology N2 - We perform both classical molecular dynamics simulations and beam model calculations to investigate the Young's modulus of kinked silicon nanowires (KSiNWs). The Young's modulus is found to be highly sensitive to the arm length of the kink and is essentially inversely proportional to the arm length. The mechanism underlying the size dependence is found to be the interplay between the kink angle potential and the arm length potential, where we obtain an analytic relationship between the Young's modulus and the arm length of the KSiNW. Our results provide insight into the application of this novel building block in nanomechanical devices. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 U6 - http://dx.doi.org/10.1088/0957-4484/24/18/185702 ER - TY - JOUR A1 - Zhang, Yancheng A1 - Zhao, Jun-Hua A1 - Jia, Yue A1 - Mabrouki, Tarek A1 - Gong, Yadong A1 - Wei, Ning A1 - Rabczuk, Timon T1 - An analytical solution on the interface debonding for large diameter carbon nanotube-reinforced composite with functionally graded variation interphase JF - Composite Structures N2 - An analytical solution on the interface debonding for large diameter carbon nanotube-reinforced composite with functionally graded variation interphase KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 SP - 261 EP - 269 ER - TY - JOUR A1 - Zhang, Yancheng A1 - Wei, Ning A1 - Zhao, Jun-Hua A1 - Gong, Yadong A1 - Rabczuk, Timon T1 - Quasi-analytical solution for the stable system of the multi-layer folded graphene wrinkles JF - Journal of Applied Physics N2 - Quasi-analytical solution for the stable system of the multi-layer folded graphene wrinkles KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Vu-Bac, N. A1 - Lahmer, Tom A1 - Keitel, Holger A1 - Zhao, Jun-Hua A1 - Zhuang, Xiaoying A1 - Rabczuk, Timon T1 - Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations JF - Mechanics of Materials N2 - Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2014 SP - 70 EP - 84 ER - TY - JOUR A1 - Zhao, Jun-Hua A1 - Lu, Lixin A1 - Rabczuk, Timon T1 - Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines JF - The Journal of Chemical Physics N2 - Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 U6 - http://dx.doi.org/10.1063/1.4878115 ER - TY - JOUR A1 - Zhao, Jun-Hua A1 - Jiang, Jin-Wu A1 - Jia, Yue A1 - Guo, Wanlin A1 - Rabczuk, Timon T1 - A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates JF - Carbon N2 - Explicit solutions for the cohesive energy between carbon nanotubes, graphene and substrates are obtained through continuum modeling of the van der Waals interaction between them. The dependence of the cohesive energy on their size, spacing and crossing angles is analyzed. Checking against full atom molecular dynamics calculations and available experimental results shows that the continuum solution has high accuracy. The equilibrium distances between the nanotubes, graphene and substrates with minimum cohesive energy are also provided explicitly. The obtained analytical solution should be of great help for understanding the interaction between the nanostructures and substrates, and designing composites and nanoelectromechanical systems. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.carbon.2013.01.041 SP - 108 EP - 119 ER -