TY - RPRT A1 - Gross, Tom A1 - Fetter, Mirko A1 - Liebsch, Sascha T1 - The cueTable Cooperative Multi-Touch Interactive Tabletop: Implementation and User Feedback T1 - The cueTable Cooperative Multi-Touch Interactive Tabletop: Implementation and User Feedback N2 - Es wurde ein multi-touch interaktives Tabletop als Basistechnologie zur Exploration neuer Interaktionskonzepte für kooperative multi-touch Anwendungen entwickelt. In dieser Publikation stellen wir vor, wie ein kooperatives multi-touch interaktives Tabletop basierend auf günstiger Standard-Hardware mit geringem Realisierungsaufwand gebaut werden kann. Wir präsentieren eine Software-Anwendung, die wir dafür entwickelt haben. And wir berichten über Benutzerkommentare zum Tabletop und der Anwendung. N2 - We developed a multi-touch interactive tabletop as a base technology to explore new interaction concepts for cooperative multi-touch applications. In this paper we explain how to build a cooperative multi-touch interactive tabletop with standard and low-budget hardware and little implementation effort. We present a software application we developed. And we report on user feedback to the tabletop and the applications KW - Angewandte Informatik KW - Interaktiver Tabletop KW - kooperatives Multi-Touch KW - Implementation KW - Benutzerkommentare KW - Interactive Tabletop KW - Cooperative Multi-Touch KW - Implementation KW - User Feedback Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-6331 ER - TY - CHAP A1 - Volkov, Andrey A1 - Kirschke, Heiko A1 - Chelyshkov, Pavel A1 - Sedov, Artem A1 - Lysenko, Denis ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - THE CRITERIA’S SET WITH INVARIANT DESIGN BUILDING ELEMENTS ON THE BASE OF THREE IMPUTATIONS: “CONVENIENCE”, “SAFETY” AND “ENERGY-EFFICIENCY” T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - The paper deals with the formalization of the criteria for constructing building management systems. We consider three criteria - “convenience”, “safety” and “energyefficiency”. For each objective proposed method of calculation. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27956 SN - 1611-4086 ER - TY - CHAP A1 - Hitzer, Eckhard ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - THE CLIFFORD FOURIER TRANSFORM IN REAL CLIFFORD ALGEBRAS T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - We briefly review and use the recent comprehensive research on the manifolds of square roots of −1 in real Clifford geometric algebras Cl(p,q) in order to construct the Clifford Fourier transform. Basically in the kernel of the complex Fourier transform the complex imaginary unit j is replaced by a square root of −1 in Cl(p,q). The Clifford Fourier transform (CFT) thus obtained generalizes previously known and applied CFTs, which replaced the complex imaginary unit j only by blades (usually pseudoscalars) squaring to −1. A major advantage of real Clifford algebra CFTs is their completely real geometric interpretation. We study (left and right) linearity of the CFT for constant multivector coefficients in Cl(p,q), translation (x-shift) and modulation (w -shift) properties, and signal dilations. We show an inversion theorem. We establish the CFT of vector differentials, partial derivatives, vector derivatives and spatial moments of the signal. We also derive Plancherel and Parseval identities as well as a general convolution theorem. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27652 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Deeb, Maher A1 - Zabel, Volkmar ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - THE APPLICATION OF POD CURVES TO DAMAGE DETECTION BASED ON PARTIAL MODELS– A NUMERICAL AND EXPERIMENTAL STUDY T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - Non-destructive techniques for damage detection became the focus of engineering interests in the last few years. However, applying these techniques to large complex structures like civil engineering buildings still has some limitations since these types of structures are unique and the methodologies often need a large number of specimens for reliable results. For this reason, cost and time can greatly influence the final results. Model Assisted Probability Of Detection (MAPOD) has taken its place among the ranks of damage identification techniques, especially with advances in computer capacity and modeling tools. Nevertheless, the essential condition for a successful MAPOD is having a reliable model in advance. This condition is opening the door for model assessment and model quality problems. In this work, an approach is proposed that uses Partial Models (PM) to compute the Probability Of damage Detection (POD). A simply supported beam, that can be structurally modified and tested under laboratory conditions, is taken as an example. The study includes both experimental and numerical investigations, the application of vibration-based damage detection approaches and a comparison of the results obtained based on tests and simulations. Eventually, a proposal for a methodology to assess the reliability and the robustness of the models is given. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170306-27615 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Djordjevic, Djordje A1 - Petkovic, Dusan A1 - Zivkovic, Darko ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - THE APPLICATION OF INTERVAL CALCULUS TO ESTIMATION OF PLATE DEFLECTION BY SOLVING POISSON’S PARTIAL DIFFERENTIAL EQUATION N2 - This paper describes the application of interval calculus to calculation of plate deflection, taking in account inevitable and acceptable tolerance of input data (input parameters). The simply supported reinforced concrete plate was taken as an example. The plate was loaded by uniformly distributed loads. Several parameters that influence the plate deflection are given as certain closed intervals. Accordingly, the results are obtained as intervals so it was possible to follow the direct influence of a change of one or more input parameters on output (in our example, deflection) values by using one model and one computing procedure. The described procedure could be applied to any FEM calculation in order to keep calculation tolerances, ISO-tolerances, and production tolerances in close limits (admissible limits). The Wolfram Mathematica has been used as tool for interval calculation. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28397 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Ghorashi, Seyed Shahram A1 - Rabczuk, Timon A1 - Ródenas García, Juan José A1 - Lahmer, Tom ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - T-SPLINE BASED XIGA FOR ADAPTIVE MODELING OF CRACKED BODIES T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - Safety operation of important civil structures such as bridges can be estimated by using fracture analysis. Since the analytical methods are not capable of solving many complicated engineering problems, numerical methods have been increasingly adopted. In this paper, a part of isotropic material which contains a crack is considered as a partial model and the proposed model quality is evaluated. EXtended IsoGeometric Analysis (XIGA) is a new developed numerical approach [1, 2] which benefits from advantages of its origins: eXtended Finite Element Method (XFEM) and IsoGeometric Analysis (IGA). It is capable of simulating crack propagation problems with no remeshing necessity and capturing singular field at the crack tip by using the crack tip enrichment functions. Also, exact representation of geometry is possible using only few elements. XIGA has also been successfully applied for fracture analysis of cracked orthotropic bodies [3] and for simulation of curved cracks [4]. XIGA applies NURBS functions for both geometry description and solution field approximation. The drawback of NURBS functions is that local refinement cannot be defined regarding that it is based on tensorproduct constructs unless multiple patches are used which has also some limitations. In this contribution, the XIGA is further developed to make the local refinement feasible by using Tspline basis functions. Adopting a recovery based error estimator in the proposed approach for evaluation of the model quality and performing the adaptive processes is in progress. Finally, some numerical examples with available analytical solutions are investigated by the developed scheme. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27637 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Liu, Xiangqin A1 - Leimbach, Robert A1 - Hartmann, Dietrich ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - SYSTEM IDENTIFICATION OF A WIND TURBINE STRUCTURE USING ROBUST MODEL UPDATING STRATEGY T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - This paper presents a robust model updating strategy for system identification of wind turbines. To control the updating parameters and to avoid ill-conditioning, the global sensitivity analysis using the elementary effects method is conducted. The formulation of the objective function is based on M¨uller-Slany’s strategy for multi-criteria functions. As a simulationbased optimization, a simulation adapter is developed to interface the simulation software ANSYS and the locally developed optimization software MOPACK. Model updating is firstly tested on the beam model of the rotor blade. The defect between the numerical model and the reference has been markedly reduced by the process of model updating. The effect of model updating becomes more pronounced in the comparison of the measured and the numerical properties of the wind turbine model. The deviations of the frequencies of the updated model are rather small. The complete comparison including the free vibration modes by the modal assurance criteria shows the excellent coincidence of the modal parameters of the updated model with the ones from the measurements. By successful implementation of the model validation via model updating, the applicability and effectiveness of the solution concept has been demonstrated. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27744 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Miro, Shorash A1 - Hartmann, Dietrich A1 - Schanz, Tom A1 - Zarev, Veselin ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - SYSTEM IDENTIFICATION METHODS FOR GROUND MODELS IN MECHANIZED TUNNELING T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - Due to the complex interactions between the ground, the driving machine, the lining tube and the built environment, the accurate assignment of in-situ system parameters for numerical simulation in mechanized tunneling is always subject to tremendous difficulties. However, the more accurate these parameters are, the more applicable the responses gained from computations will be. In particular, if the entire length of the tunnel lining is examined, then, the appropriate selection of various kinds of ground parameters is accountable for the success of a tunnel project and, more importantly, will prevent potential casualties. In this context, methods of system identification for the adaptation of numerical simulation of ground models are presented. Hereby, both deterministic and probabilistic approaches are considered for typical scenarios representing notable variations or changes in the ground model. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27771 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Göbel, Luise A1 - Osburg, Andrea A1 - Lahmer, Tom ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - STUDY OF ANALYTICAL MODELS OF THE MECHANICAL BEHAVIOR OF POLYMER-MODIFIED CONCRETE T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - Polymer modification of mortar and concrete is a widely used technique in order to improve their durability properties. Hitherto, the main application fields of such materials are repair and restoration of buildings. However, due to the constant increment of service life requirements and the cost efficiency, polymer modified concrete (PCC) is also used for construction purposes. Therefore, there is a demand for studying the mechanical properties of PCC and entitative differences compared to conventional concrete (CC). It is significant to investigate whether all the assumed hypotheses and existing analytical formulations about CC are also valid for PCC. In the present study, analytical models available in the literature are evaluated. These models are used for estimating mechanical properties of concrete. The investigated property in this study is the modulus of elasticity, which is estimated with respect to the value of compressive strength. One existing database was extended and adapted for polymer-modified concrete mixtures along with their experimentally measured mechanical properties. Based on the indexed data a comparison between model predictions and experiments was conducted by calculation of forecast errors. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27973 SN - 1611-4086 ER - TY - CHAP A1 - Kavrakov, Igor A1 - Timmler, Hans-Georg A1 - Morgenthal, Guido ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - STRUCTURAL OPTIMIZATION USING THE ENERGY METHOD WITH INTEGRAL MATERIAL BEHAVIOUR T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - With the advances of the computer technology, structural optimization has become a prominent field in structural engineering. In this study an unconventional approach of structural optimization is presented which utilize the Energy method with Integral Material behaviour (EIM), based on the Lagrange’s principle of minimum potential energy. The equilibrium condition with the EIM, as an alternative method for nonlinear analysis, is secured through minimization of the potential energy as an optimization problem. Imposing this problem as an additional constraint on a higher cost function of a structural property, a bilevel programming problem is formulated. The nested strategy of solution of the bilevel problem is used, treating the energy and the upper objective function as separate optimization problems. Utilizing the convexity of the potential energy, gradient based algorithms are employed for its minimization and the upper cost function is minimized using the gradient free algorithms, due to its unknown properties. Two practical examples are considered in order to prove the efficiency of the method. The first one presents a sizing problem of I steel section within encased composite cross section, utilizing the material nonlinearity. The second one is a discrete shape optimization of a steel truss bridge, which is compared to a previous study based on the Finite Element Method. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28065 SN - 1611-4086 ER -