TY - THES A1 - Wellnitz, Felix T1 - BAUKLIMATISCHE ERTÜCHTIGUNG UND NACHHALTIGE INSTANDSETZUNG DENKMALGESCHÜTZTER VERWALTUNGSBAUTEN DER 1950er JAHRE AM BEISPIEL DER EHEMALIGEN BAYERISCHEN LANDESVERTRETUNG VON SEP RUF IN BONN N2 - Viele Baudenkmale sind dem Konflikt aus baulichem Instandsetzungsbedarf für eine zeitgemäße Nutzung und einer sich möglicherweise daraus ergebenden Gefährdung der Denkmalsubstanz ausgesetzt. Gründe sind steigende Energiekosten für den Gebäudebetrieb, zeitgemäße Anforderungen an Behaglichkeit und Arbeitsschutz, sowie die Vermeidung von Schäden an der Substanz aufgrund baulicher Mängel des konstruktiven Wärme- und Feuchteschutzes. Gleichzeitig gilt für viele Bauten aber auch die Notwendigkeit regelmäßiger Nutzung und Bewirtschaftung, um den Erhalt überhaupt zu sichern. Die energetische Ertüchtigung von Baudenkmalen scheitert in diesem Spannungsfeld oft am unlösbaren Konflikt zwischen dem Erhalt der bauzeitlichen Substanz auf der einen und der notwendigen energetischen Optimierung der Gebäudehülle auf der anderen Seite. Zielsetzung dieser Fallstudie ist die beispielhafte Entwicklung einer bauklimatischen und denkmalgerechten Ertüchtigungsstrategie am Beispiel eines Verwaltungsgebäudes der Nachkriegsmoderne als Beitrag zur Lösung dieses Konfliktes. KW - Denkmalpflege KW - Bauklimatik KW - Bauphysik KW - Sanierung KW - Nachkriegsmoderne KW - Ertüchtigung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20140919-23031 ER - TY - THES A1 - Tschernyschkow, Anton T1 - Instationäre Wärmeleitung in geschichteten Wänden N2 - Analytische Lösung der Wärmeleitungsgleichung für inhomogene Medien um ortsveränderliche Materialeigenschaften zuzulassen, womit die sprunghafte Änderung der Stoffkennwerte näherungsweise erfasst werden kann. Dazu ist ein Sturm-Liouville-Problem zu lösen. KW - Wärmeleitung KW - Wärmeübertragung KW - Wand KW - Bauphysik KW - Mathematik KW - analytische Lösung KW - geschichtete Wände KW - mehrschichtige Wände KW - Wärmeleitungsgleichung KW - eindimensionale Wärmeleitung Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170914-36014 ER - TY - CHAP A1 - Petersen, Michael A1 - Meißner, Udo F. T1 - Energieoptimierte Gebäudeplanung mit verteilter Informationsmodellierung N2 - n allen Stadien des Planungsprozesses von Gebäuden nehmen Entwurfsentscheidungen starken Einfluß auf die bauphysikalische Qualität eines Gebäudes. Im Rahmen dieses Beitrags wird deshalb die Integration bauphysikalischer Gesichtspunkte in den Planungsprozeß vorgestellt, bei welcher dem Fachingenieur geeignete Werkzeuge zur Verfügung gestellt werden, die es erlauben, das zu planende Gebäude als Einheit von baulicher Hülle, Anlagentechnik und Nutzung zu betrachten. Darauf aufbauend wird eine gezielte Überprüfung des Gebäudemodells mit Hilfe von bauphysikalischen Nachweisen und Simulationen durchgeführt, um eine bauphysikalische Entscheidungsunterstützung im Entwurfsprozeß vornehmen zu können. Das erarbeitete Programmsystem VAMOS (Verteilte Applikation zur Modellierung und Optimierung bauphysikalischer Systeme) nutzt die Middleware-Technologie CORBA konsequent für die dynamische, netzwerkweite Integration fünf verschiedener aufgabenspezifischer Komponenten: Die erste Komponente zur Modellerzeugung und -manipulation wurde auf Basis des CAD-Systems AutoCAD als ARX-Laufzeitmodul erstellt. Dadurch ist es einerseits möglich, bestehende Planungsabläufe unter Verwendung von Standardwerkzeugen des entwerfenden Ingenieurs zu erhalten, andererseits können die umfangreichen Fähigkeiten des AutoCAD-Geometriekerns für die Erstellung komplexer dreidimensionaler Bauteilgeometrien genutzt werden. In der zweiten Komponenten wurde eine objektorientiertes Datenbanksystem in das Gesamtsystem integriert, das auch für die Verwaltung verschiedener Versionen von Gebäudeentwürfen verwendet wird. Die bauphysikalischen Nachweise, die auf Basis der zentral im Netzwerk bereitgestellten Modelle automatisiert durchgeführt werden können, wurden auf Basis der Java-Applet-Technologie abgebildet, um die zentrale Wartbarkeit und Anpassbarkeit an Veränderungen der Vorschriften und Gesetzesgrundlagen zu ermöglichen. Dabei wurden sowohl die aktuelle Wärmeschutzverordnung (WSVO) als auch die Energieeinsparverordnung (EnEV) berücksichtigt. Für die ganzheitliche Erfassung des Gebäudeenergiehaushaltes wurde das Simulationsprogramm TRNSYS um ein Schnittstellenmodul unter Verwendung von IDL-Interfaces erweitert, so daß die direkte Integration der umfangreichen Funktionalitäten in das Gesamtsystem möglich wird. Um die Modellierung auf der Basis von realistischen Parametern durchführen zu können, wurde eine Komponente entwickelt, die unter Verwendung der Technologie mobiler Internet-Agenten die dynamische Recherche von herstellerspezifischen Parametern im Internet ermöglicht. KW - Bauphysik KW - Gebäude KW - Energiemanagement KW - CAD Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-6066 ER - TY - THES A1 - Müller, Naira T1 - Erweiterung von Fliplife mit bauphysikalischen Inhalten N2 - In dieser Arbeit wurde ein Konzept erstellt, das Fliplife um einen bauphysikalischen Karriereweg erweitert. In das Spiel wurden beispielhaft bauphysikalische Inhalte sowie spielkonzept-kompatible und wissensvermittelnde Spielmechaniken implementiert. KW - Social Game KW - Bauphysik KW - Fliplife KW - Lernspiele KW - Digital Games Based Learning Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20120704-16763 ER - TY - CHAP A1 - Jentsch, Mark F. ED - Kornadt, Oliver T1 - Entwicklung eines Sommerreferenzjahres zur Bestimmung der sommerlichen Überhitzung von Gebäuden T2 - Bauphysiktage Kaiserslautern 2015, Kaiserslautern, 21-22 Oktober 2015 N2 - Die Ableitung von sommer-fokussierten warmen Referenzjahren aus langjährigen Klimadaten erfolgt in Europa bisher nach unterschiedlichen, länderspezifischen Methoden, die sich in der Regel allein auf die Trockentemperatur beziehen und in der Auswahl eines zusammenhängenden realen Sommerhalbjahres resultieren. Simulationsergebnisse zur sommerlichen Überhitzung von natürlich belüfteten Gebäuden in Deutschland und Großbritannien zeigen jedoch für einige Wetterstationen weniger Überhitzung für Simulationen mit dem sommer-fokussierten Referenzjahr als für solche mit dem entsprechenden Testreferenzjahr (TRY) für den gleichen Ort. Dies gilt insbesondere dann, wenn einzelne Monate miteinander verglichen werden. Neben der Wahl eines kompletten Halbjahres, das sowohl extrem warme als auch vergleichsweise kühle Monate beinhalten kann, liegt dies vor allem begründet in der fehlenden Berücksichtigung der Solarstrahlung bei der Auswahl eines warmen Referenzjahres, die jedoch eine wichtige Rolle für sommerliche Überhitzungserscheinungen in Gebäuden spielt. Eine verlässliche, allgemein anerkannte Methode zur Erstellung von sommer-fokussierten Referenzjahren erscheint daher auch im Hinblick auf die rechtlichen Rahmenbedingungen in der Europäischen Union, die Strategien zur natürlichen Belüftung von Neubauten und Sanierungen begünstigen, erforderlich. Diese Arbeit präsentiert einen Ansatz zur Erstellung eines Sommerreferenzjahres (Summer Reference Year – SRY) aus dem TRY eines gegebenen Ortes und langjährigen Klimadaten. Die existierenden TRY-Daten werden hierbei skaliert, um den Bedingungen für Trockentemperatur und Solarstrahlung von nah-extremen Kandidatenjahren zu entsprechen, die separat über einen statistischen Ansatz ausgewählt werden. Anschließend werden Feuchttemperatur, Windgeschwindigkeit und Luftdruck des TRY durch lineare Korrelationen mit der Trockentemperatur angepasst, um die entsprechenden SRY-Daten zu erhalten. Der Vorteil dieser Methode liegt darin, dass das grundlegende Wettermuster des TRY erhalten bleibt und somit eine klare Relation zwischen SRY und TRY besteht, die eine Vergleichbarkeit von Simulationsergebnissen gewährleistet. Über vergleichende Gebäudesimulationen mit dem zugrundeliegenden TRY und langjährigen Klimadatensätzen kann nachgewiesen werden, dass sich das SRY zur Ermittlung sommerlicher Überhitzungserscheinungen in natürlich belüfteten Gebäuden eignet. Weiterhin kann gezeigt werden, dass das SRY im Gegensatz zur direkten Nutzung eines Kandidatenjahres für einen nah-extremen Sommer die Möglichkeit eines monatsscharfen Vergleichs mit dem TRY erlaubt und frei von wenig repräsentativen Besonderheiten ist, die in den entsprechenden Kandidatenjahren vorhanden sein können. KW - Bauphysik KW - Gebäude KW - Simulation KW - Überhitzung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170516-31058 PB - Eigenverlag der Technischen Universität Kaiserslautern CY - Kaiserslautern ER - TY - THES A1 - Jahn, Rosa T1 - Evaluation von Nutzerbedürfnissen in Wohngebäuden unter Berücksichtigung hygrothermischer Messdaten N2 - Evaluation von Nutzerbedürfnissen in Wohngebäuden unter Berücksichtigung hygrothermischer Messdaten KW - Raumklima KW - Bauphysik KW - Umfrage Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20130320-18758 N1 - Der Volltext-Zugang wurde im Zusammenhang mit der Klärung urheberrechtlicher Fragen mit sofortiger Wirkung gesperrt. ER - TY - THES A1 - Hoffmann, Sabine T1 - Numerische und experimentelle Untersuchung von Phasenübergangsmaterialien zur Reduktion hoher sommerlicher Raumtemperaturen T1 - Numerical and experimental investigation on phase change materials to reduce high indoor temperatures during summer N2 - Moderne Büroarchitektur mit Räumen in Leichtbauweise und großen transparenten Fassa-denanteilen verschärft im Zusammenwirken mit hohen internen Lasten die Problematik der sommerlichen Überhitzung in Gebäuden. Phasenübergangsmaterialien (PCM: phase change materials) stellen eine interessante Möglichkeit dar, sommerliche Überhitzung in Gebäuden ohne aufwändige Anlagentechnik wie beispielsweise Klimaanlagen zu reduzieren. Der thermische Komfort in Räumen, die mit einem PCM-Putz ausgestattet sind, kann signifikant erhöht werden. Die Arbeit untersucht Anwendungsmöglichkeiten und Optimierungspotential eines PCM-Putzes auf experimentelle und numerische Weise. Zur Untersuchung des PCM-Putzes wurden materialtechnische und experimentelle sowie numerische und numerisch-analytische Methoden eingesetzt. Die Kenntnis der thermischen Parameter des PCM-Putzes ist unablässig für die Berechnung der möglichen Temperaturreduktionen. Zur Bestimmung der Latentwärme, des qualitativen Schmelz- und Erstarrungsprozesses sowie des Temperaturintervalls, in dem der Phasenübergang stattfindet, wurden Messungen mit einem Differential Scanning Calorimeter (DSC) durchgeführt. Für die experimentelle Untersuchung des PCM-Putzes wurden zwei identische Testräume in Leichtbauweise erstellt. Die Räume wurden im Verifikationsobjekt „Eiermannbau“ des Sonderforschungsbereiches SFB 524 der Bauhaus-Universität Weimar gemessen. Nach der Überprüfung, dass sich beide Räume thermisch gleich verhalten, wurde ein Raum mit dem PCM-Putz und der zweite Raum mit einem vergleichbaren Innenputz ohne PCM verputzt. Thermoelemente zur Temperaturmessung im Bauteil, an der Oberfläche und zur Raumlufttemperaturbestimmung wurden angebracht und mit einer Messwerterfassungsanlage verbunden. Der Verlauf der Außenlufttemperatur und die Globalstrahlung am Standort der Versuchsräume wurden aufgezeichnet, um einen Klimadatensatz zu erstellen. Für die Berechnung der Temperaturverteilung in einem PCM-Bauteil mit kontinuierlichem Phasenübergang existiert keine geschlossene analytische Lösung. Daher wurde ein numerischer Ansatz gewählt, bei dem der Phasenübergang im Temperaturbereich T1 bis T2 mit Hilfe einer temperaturabhängigen Wärmekapazität c(T) innerhalb der erweiterten Fou-rier’schen Wärmeleitungsgleichung dargestellt wird. Die Funktion c(T) wird auf Basis der DSC-Messungen bestimmt. Die Modellierung erfolgte mit einem Finite-Differenzen-Verfahren auf Grundlage der Fourier’schen Wärmeleitungsgleichung. Im Rahmen der Arbeit wurde ein PCM-Modul entwickelt, das in ein Gebäudesimulationsprogramm implementiert wurde. Mit dem neuen Modul lassen sich sowohl die Temperaturverläufe in einem PCM-Bauteil wie auch seine Wechselwirkung mit dem Raumklima darstellen. Eine Validierung des entwickelten PCM-Moduls anhand von zahlreichen experimentellen Daten der Versuchsräume wurde für das PCM-Modul erfolgreich durchgeführt. Sommerliche Überhitzungsstunden können durch PCM in Wand- und Deckenelementen deutlich reduziert werden. Der PCM-Putz eignet sich vor allem für Anwendungen in Leichtbauten wie z.B. moderne Büroräume. In Räumen, in denen bereits eine ausreichende thermische Masse vorhanden ist, ist die Temperaturreduktion durch PCM nur gering. Kann das PCM während der Nachtstunden nicht erstarren, erschöpft sich seine Fähigkeit zur Latentwärmespeicherung. Erhöhte Nachtlüftung führt bei entsprechend niedrigen Außentemperaturen zu höherem Wärmeübergang und kann damit zur besseren Entladung des PCM beitragen. Im Rahmen der Dissertation konnten Aussagen zur idealen Phasenübergangstemperatur in Abhängigkeit des verwendeten Materials und der Schichtdicke getroffen werden. Die Reduktion der Oberflächentemperaturen, die sich bei Einsatz eines PCM-Putzes unter geeigneten Randbedingungen ergibt, beträgt 2.0 - 3.5 K für eine Putzschicht von 1 cm und 3.0 - 5.0 K für eine Putzschicht von 3 cm. Diese Werte wurden sowohl numerisch als auch durch experimentelle Untersuchungen ermittelt. Die Reduktion der Lufttemperaturen aufgrund einer Konditionierung des Raumes mit PCM-Putz beträgt bei geeigneten thermischen Verhältnissen ca. 1.0 - 2.5 K für eine Putzschicht von 1 cm und 2.0 - 3.0 K für eine Putzschicht von 3 cm. Die operative Temperatur als wichtiger Komfortparameter kann durch den Einsatz des PCM-Putzes um bis zu 4 K gesenkt werden. Damit lässt sich mit Hilfe eines PCM-Putzes die thermische Behaglichkeit in einem Raum deutlich erhöhen. N2 - Modern office architecture with light-weight constructions, huge transparent facades and high internal heat loads aggravate the problem of overheating in buildings during summer. Phase Change Materials (PCM) are an interesting possibility to reduce overheating of buildings without expensive air-conditioning. The thermal comfort in rooms that are plastered with a PCM-plaster can be significantly increased. The thesis investigates fields of application and the potential for optimisation of a PCM-plaster in experimental and numerical way. For the investigation of the PCM-plaster investigations on the material properties were applied as well as experimental, numerical and analytical methods. The knowledge of the thermal properties of the PCM-plaster is indispensable to calculate the potential temperature reductions. Differential scanning measurements (DSC) were conducted to determine the latent heat of the material, the quality of melting and solidification and the temperature range in which the phase transition occurs. For the experimental investigation of the PCM-plaster two identical test rooms were erected as light-weight constructions. The rooms were monitored in the verification building “Eiermannbau” of the Collaborative Research Center (Sonderforschungsbereich) 524 of Bauhaus-Universität Weimar. After having ensured that both rooms behave thermally identically, one room was plastered with the PCM-plaster and the second one was plastered with a comparable conventional plaster. Thermocouples were added to measure air temperature and the readings went into a data acquisition. The course of ambient temperature and global radiation was measured as well to generate a climate data file. There is no closed analytical solution to calculate the temperature allocation in a PCM-material that shows a continuous phase transition. Therefore a numerical approach was chosen where the phase change process was described using a temperature dependent function of heat capacity c(T) in the temperature range of phase transition T1 to T2. The function c(T) is determined based on DSC-measurements. The numerical modelling was realised by modifying the Fourier equation of heat conduction with a finite difference approach. Within the thesis a PCM module was developed and implemented in a thermal building simulation software. With this new module the temperature allocation in a PCM-construction can be calculated as well as its interaction with the room. The validation of the developed PCM-module based on the readings of the test rooms was successful. Overheating hours during summer can be reduced significantly when using PCM in walls and ceilings. The PCM-plaster is especially useful for light-weight constructions as typical modern office rooms. In rooms where a significant thermal mass can be already found, the effect of PCM is more humble. If the PCM cannot solidify during night time its ability to store heat wears out. An increased ventilation during night time leads to a higher heat transfer if ambient temperatures are low enough and can therefore help the solidification of PCM. The thesis could give advices for the ideal phase change temperature depending on the material and on the layer thickness used. When using a PCM-plaster of 1 cm, surface temperatures can be lowered by 2.0 – 3.5 K under specific boundary conditions. The temperature reduction ranges from 3.0 -5.0 K for a PCM-plaster of 3 cm. These values were found in the numerical investigation as well as in the experiments. The reduction of room temperature due to the use of PCM-plaster was 1.0 – 2.5 K for a 1 cm layer and 2.0 – 3.0 for a 3 cm layer of PCM-plaster. The operative temperature as important comfort parameter was lowered by up to 4 K when using PCM-plaster. The thermal comfort in a room can thus be increased significantly with the investigated material. KW - Bauphysik KW - Phasenübergangsmaterialien KW - PCM-Putz KW - Latentwärmespeicher KW - sommerlicher Wärmeschutz KW - Gebäudesimulation ESP-r KW - phase change materials KW - PCM-plaster KW - latent heat storage KW - thermal protection KW - thermal building simulation Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20070709-8790 ER - TY - GEN A1 - Großmann, Felix T1 - Capturing Sheep With Minecraft N2 - Capturing Sheep With Minecraft befasst sich mit ausgewählten Problemen der Bauphysik und deren Umsetzung mithilfe des Computerspiels Minecraft. Es werden ausgewählte Probleme der Bauphysik in Minecraft abgebildet um diese Schülern und Studenten näher zu bringen. Es wurde ein Szenario in Minecraft entworfen welches durch entgegenwirken der abgebildeten Probleme, durch den Spieler gelöst werden soll. KW - Minecraft KW - Probleme KW - Bauphysik KW - Minecraft KW - Bauphysik KW - Probleme Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20121107-17530 ER - TY - THES A1 - Franke, Carolin T1 - Bauphysikalisches Quartett N2 - Quartett ist ein ebenso altes, wie auch beliebtes Kartenspiel. Vor allem bei Kindern erfreut es sich großer Beliebtheit, während in den älteren Generationen kaum jemand mit Quartettkarten spielt. Quartettspiele speziell für Kleinkinder sind zum Großteil mit Inhalten versehen, die Wissen auf spielerische Art und Weise vermitteln. Dabei werden gute Lernerfolge in dieser Zielgruppe verzeichnet. Wie lassen sich also diese Lernerfolge durch das Spielen mit Quartettkarten erzielen? Und wie kann dieser Effekt auch auf Studenten übertragen werden? Ziel dieser Arbeit ist es, das Konzept des Quartettkartenspiels auf bauphysikalische Inhalte anzuwenden und gegebenenfalls die Spielprinzipien zu erweitern oder zu verändern. Dabei sind die Studenten der Fakultät Bauingenieurswesen die Zielgruppe, an die sich das Spiel richten soll. Besondere Herausforderung ist es, unterschiedliche Objekteklassen von bauphysikalischer Relevanz in einem Spiel zusammenzubringen und vergleichbar zu machen. Das sich ergebende Quartettkartenspiel sollte nicht nur eine Objektklasse, sondern mehrere Objektklassen zum Inhalt haben. Dabei sollen die Objektklassen so gewählt werden, dass sich Kategorien mit bauphysikalischem Inhalt finden lassen. Augenmerk sollte auch auf die Strukturierung der Lerninhalte gelegt werden, um eine leichte Übertragung des Spielkonzepts auf andere Fachdomänen zu ermöglichen. Das Ergebnis der Arbeit sind zwei fertige und spielbare Quartette. KW - Quartett KW - Lernspiel KW - Bauphysik KW - Baustoff Quartett Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20121130-17723 ER - TY - CHAP A1 - Dokhanchi, Najmeh Sadat A1 - Arnold, Jörg A1 - Vogel, Albert A1 - Völker, Conrad T1 - Acoustic Travel-Time Tomography: Optimal Positioning of Transceiver and Maximal Sound-Ray Coverage of the Room T2 - Fortschritte der Akustik - DAGA 2019 N2 - Acoustic travel-time tomography (ATOM) determines the distribution of the temperature in a propagation medium by measuring the travel-time of acoustic signals between transmitters and receivers. To employ ATOM for indoor climate measurements, the impulse responses have been measured in the climate chamber lab of the Bauhaus-University Weimar and compared with the theoretical results of its image source model (ISM). A challenging task is distinguishing the reflections of interest in the reflectogram when the sound rays have similar travel-times. This paper presents a numerical method to address this problem by finding optimal positions of transmitter and receiver, since they have a direct impact on the distribution of travel times. These optimal positions have the minimum number of simultaneous arrival time within a threshold level. Moreover, for the tomographic reconstruction, when some of the voxels remain empty of sound-rays, it leads to inaccurate determination of the air temperature within those voxels. Based on the presented numerical method, the number of empty tomographic voxels are minimized to ensure the best sound-ray coverage of the room. Subsequently, a spatial temperature distribution is estimated by simultaneous iterative reconstruction technique (SIRT). The experimental set-up in the climate chamber verifies the simulation results. KW - Bauphysik KW - Acoustic Travel-Time Tomography KW - Bauklimatik KW - Akustische Tomographie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190408-38778 UR - https://www.dega-akustik.de/publikationen/online-proceedings/ N1 - This conference paper has been submitted to the DAGA 2019. Thus, the original paper first is published in the "Fortschritte der Akustik - DAGA 2019" ER -