TY - THES A1 - Schorling, York T1 - Beitrag zur Stabilitätsuntersuchung von Strukturen mit räumlich korrelierten geometrischen Imperfektionen N2 - Für geometrisch imperfekte Strukturen wird die Versagenswahrscheinlichkeit bezüglich Stabilitätskriterien bestimmt. Eine probabilistische Beschreibung der geometrischen Imperfektionen erfolgt mit skalaren ortsdiskretisierten Zufallsfeldern. Die Stabilitätsberechnungen werden mit der Finite Elemente Methode durchgeführt. Ausgangspunkt der Berechnung ist eine systematische Formulierung probabilistisch gewichteter Imperfektionsformen durch eine Eigenwertzerlegung der Kovarianzmatrix. Wenn mit einer strukturmechanisch orientierten Sensitivitätsanalyse ein Unterraum zur näherungsweisen Beschreibung des probabilistischen Strukturverhaltens gefunden wird, kann die Versagenswahrscheinlichkeit numerisch sehr effizient durch ein Interaktionsmodell bestimmt werden. Es zeigte sich, daß dies genau dann möglich ist, wenn die Beulform merklich im Imperfektionsfeld enthalten ist. Die Imperfektionsform am Bemessungspunkt entspricht dann, unabhängig vom Lastniveau, gerade der Beulform. Wenn die Beulform im Imperfektionsfeld einen untergeordneten Beitrag liefert, erscheint eine Reduktion des stochastischen Problems auf wenige Zufallsvariablen dagegen nicht möglich. N2 - The thesis presents a concept for reliability analysis of geometrical imperfect structures with respect to static stability criteria. The geometrical imperfections are modeled as Gaussian random fields. The structural analysis is based on the Finite Element Method. A spectral decomposition of the covariance matrix, enables to formulate independent probabilistically weighted imperfections shapes, which may be analyzed by means of structural mechanics. Reliability calculations with procedures such as the response surface method require the reduction of the random variable space. Examples proved that a suitable definition of a subspace of the random variable space is possible, if the buckling shapes are sufficiently included in the random field. In this case the imperfection shape is-independent of the load level-identical to the buckling shape. In contrast if the buckling shapes are not included in the random field, the structure shows a wide banded behavior. Consequently a reduction of the variable space and the application of an interaction models is then not feasible for the determination of the failure probabilty. KW - Tragwerk KW - Formabweichung KW - Stabilität KW - Beulung KW - Zuverlässigkeit KW - Finite-Elemente-Methode KW - Imperfektion KW - Berechnung KW - Stochastik KW - Zufallsfeld Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20040216-317 ER - TY - THES A1 - Roos, Dirk T1 - Approximation und Interpolation von Grenzzustandsfunktionen zur Sicherheitsbewertung nichtlinearer Finite-Elemente-Strukturen T1 - Reliability analysis using approximation and interpolation of nonlinear finite element limit state functions N2 - Die vorliegende Arbeit beschäftigt sich mit der Berechnung der Sicherheit von Strukturen mit sowohl geometrisch als auch physikalisch nichtlinearem Verhalten. Die Berechnung der Versagenswahrscheinlichkeit einer Struktur mit Hilfe von Monte-Carlo-Simulationsmethoden erfordert, dass die Funktion der Strukturantwort implizit berechnet wird, zum Beispiel durch nichtlineare Strukturanalysen für jede Realisation der Zufallsvariablen. Die Strukturanalysen bilden jedoch den Hauptanteil am Berechnungsaufwand der Zuverlässigkeitsanalyse, so dass die Analyse von realistischen Strukturen mit nichtlinearem Verhalten durch die begrenzten Computer-Ressourcen stark eingeschränkt ist. Die klassischen Antwortflächenverfahren approximieren die Funktion der Strukturantwort oder aber die Grenzzustandsfunktion durch Polynome niedriger Ordnung. Dadurch ist für die Auswertung des Versagens-Kriteriums nur noch von Interesse, ob eine Realisation der Basisvariablen innerhalb oder außerhalb des von der Antwortflächenfunktion gebildeten Raumes liegt - die Strukturanalyse kann dann entfallen. Bei stark nichtlinearen Grenzzustandsfunktionen versagt die polynomiale Approximation. Das directional sampling neigt bei Problemen mit vielen Zufallsvariablen zu einem systematischen Fehler. Das adaptive importance directional sampling dagegen beseitigt diesen Fehler, verschenkt jedoch Informationen über den Verlauf der Grenzzustandsfunktion, da die aufgefundenen Stützstellen aus den vorangegangenen Simulationsläufen nicht berücksichtigt werden können. Aus diesem Grund erscheint eine Kombination beider Simulationsverfahren und eine Interpolation mittels einer Antwortfläche geeignet, diese Probleme zu lösen. Dies war die Motivation für die Entwicklung eines Verfahren der adaptiven Simulation der Einheitsvektoren und anschließender Interpolation der Grenzzustandsfunktion durch eine Antwortflächenfunktion. Dieses Vorgehen stellt besondere Anforderungen an die Antwortflächenfunktion. Diese muss flexibel genug sein, um stark nichtlineare Grenzzustandsfunktionen beliebig genau annähern zu können. Außerdem sollte die Anzahl der verarbeitbaren Stützstellen nicht begrenzt sein. Auch ist zu berücksichtigen, dass die Ermittlung der Stützstellen auf der Grenzzustandsfunktion nicht regelmäßig erfolgt. Die in dieser Arbeit entwickelten Methoden der lokalen Interpolation der Grenzzustandsfunktion durch Normalen-Hyperebenen bzw. sekantialen Hyperebenen und der sowohl lokalen als auch globalen Interpolation durch gewichtete Radien erfüllen diese Anforderungen. ungen. dieser Arbeit entwickelten Methoden der lokalen Interpolation der Grenzzustandsfunktion durch Normalen-Hyperebenen bzw. sekantialen Hyperebenen und der sowohl lokalen als auch globalen Interpolation durch gewichtete Radien erfüllen diese Anforderungen. N2 - The objective is the analysis of the structural reliability of nonlinear finite element systems. Normally, the limit state of a structural system is described implicitly, e.g. through an algorithmic procedure within finite element analysis. Alternatively, the original limit state function can be approximated by a response surface function. One of the major advantages of the response surface method lies in its potential to selectively determine the number of structural analyses of the support points. By such means the computational effort can be substantially reduced. On the other hand, the global approximation schemes widely used in the application of the response surface method can be quite misleading due to the lack of information in certain regions of the random variable space. It is therefore required to avoid such undesirable interpolation errors at reasonable computational effort. The polynomial approximations are not quite flexible. They always need a predefined number of limit state check points in unimportant directions in order to avoid any approximation problems. On this account the maximum number of limit state check points is limited, too. The study presents an approach to polyhedral and weighted modeling of convex and concave failure surfaces intended to provide reasonably accurate estimates of failure probabilities while maintaining computational efficiency. In particular, these response surfaces can be adaptively refined to consistently increase the accuracy of the estimated failure probability. This is achieved by a combination of random search strategies (based on the adaptive directional sampling approach) as well as deterministic search refinement together with local and global interpolation schemes. The main advantage of these methods is their flexibility for the approximation of highly nonlinear limit state functions. In this sense, the proposed methods are very robust and efficient. KW - Tragwerk KW - Nichtlineares System KW - Tragfähigkeit KW - Mechanisches Versagen KW - Zuverlässigkeitstheorie KW - Finite-Elemente-Methode KW - Sicherheit KW - Antwortflächenverfahren KW - structural reliability KW - response surface method KW - finite elements Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20040311-745 ER - TY - CHAP A1 - Raue, Erich A1 - Weitzmann, Rüdiger T1 - Konzepte zur numerischen Lösung von Grenzwiderstandsaufgaben unter Berücksichtigung des adaptiven Tragverhaltens von Stahlbetonkonstruktionen N2 - Berechnungsmethoden mit Berücksichtigung des physikalisch nichtlinearen Verhaltens von Stahlbetonkonstruktionen werden mit Einführung der europäischen und nationalen Normung verstärkten Einsatz in der Tragwerksplanung finden. Hierbei sind im Gegensatz zu linearen Berechnungen zeitliche Aspekte der Tragwerksbeanspruchung zu berücksichtigen. Ein Lösungsansatz zur Beherrschung von Lastfolgeeffekten kann auf der Grundlage der Theorie des adaptiven Tragwerkes abgeleitet werden. Unter Verwendung von Algorithmen der mathematischen Optimierung lassen sich derartige Probleme numerisch lösen. Von besonderem Interesse sind dabei spezielle Formulierungen zur Bestimmung von Grenzwiderständen, die zur Bemessung von Stahlbetontragwerken herangezogen werden können. Im Beitrag werden zwei Konzepte zur numerischen Bestimmung von adaptiven Grenzwiderständen auf der Basis der nichtlinearen Optimierung vorgestellt, diese sind: - Konzept des superponierten Restzustandes - Konzept der gekoppelten plastischen Antwort. Es wird von einem elastisch- plastischen Verhalten der untersuchten Struktur ausgegangen. KW - Tragwerk KW - Stahlbeton KW - Nichtlineare Mechanik KW - Grenzzustand KW - Numerisches Verfahren Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-6164 ER - TY - CHAP A1 - Raue, Erich A1 - Vaidogas, E. R. A1 - Müller, Karl-Heinz T1 - Bewertung der Grenzlast von elastisch-plastischen Tragwerken mit Hilfe stochastischer Methoden N2 - Für die Analyse von Tragwerken sowohl des Stahlbaus als auch des Massivbaus eröffnet die nationale und internationale Normengebung in zunehmendem Maße die Anwendung physikalisch nichtlinearer Berechnungsmodelle. Es ist zu erwarten, daß neben dem traditionellen elastischen Berechnungsmodell das linearelastisch-idealplastische Materialmodell in die Tragwerksanalyse Eingang finden wird. Während bei den traditionellen Berechnungsverfahren auf der Grundlage der Elastizitätstheorie hinreichende Erfahrungen durch die Planungspraxis bestehen und umfangreiche Untersuchungen zur dabei erreichten Sicherheit vorliegen, stellen die nichtlinearen Berechnungsmethoden sowohl in mechanischer als auch in sicherheitstheoretischer Hinsicht ein neues Erfahrungsfeld dar. Im vorliegenden Beitrag werden aus der Vielzahl der anstehenden Probleme folgende Teilprobleme behandelt: Bestimmung der Versagenswahrscheinlichkeit elasto-plastischer Tragsysteme nach dem Kriterium der plastischen Grenzlast Ermittlung stochastischer Eigenschaften des plastischen Grenzlastparameters elasto-plastischer Tragsysteme. Die Lösung des mechanischen Problems geschieht über eine lineare Optimierungsaufgabe, die nach dem statischen Theorem der plastischen Grenzlast formuliert ist. Als stochastische Methode wird die Simulation angewandt, die zum einen auf einer zufälligen Erzeugung der Realisierungen (stochastische Simulation) und zum anderen auf einer planmäßigen Erzeugung der Realisierungen (konstruktive Simulation) beruhen kann. Für jedes der Teilprobleme wird ein Beispiel vorgestellt. KW - Tragwerk KW - Elastoplastizität KW - Grenzlast KW - Stochastisches Modell Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-4296 ER - TY - CHAP A1 - Raue, Erich A1 - Marx, Steffen A1 - Weitzmann, Rüdiger T1 - Beitrag zur Anwendung der nichtlinearen Optimierung bei der geometrisch und physikalisch nichtlinearen Tragwerksanalyse N2 - Bei der Tragwerksplanung sowohl für Massivkonstruktionen als auch für Stahlkonstruktionen werden zukünftig nichtlineare Berechnungsverfahren in größerem Umfang Anwendung finden, als das in der Vergangenheit üblich bzw. möglich war. Wichtige Impulse gehen dabei von der europäischen Normung aus. Bei der Anwendung von Berechnungsverfahren, die die Nichtlinearität des Materialverhaltens berücksichtigen und bei der Ermittlung der Tragsicherheit planmäßig ausnutzen, ist es notwendig, die Entwicklung plastischer Deformationen zu verfolgen und bei der Beurteilung des Grenzzustandes der Tragfähigkeit als Kriterium mit heranzuziehen. Im vorliegenden Beitrag werden mathematische Modelle für folgende Berechnungsaufgaben vorgestellt: Ermittlung der Schnittgrößen und Formänderungen in ebenen Stabtragwerken nach Theorie II. Ordnung unter Berücksichtigung der physikalischen Nichtlinearität und Ermittlung von Grenzlasten, die durch Spannungs- und Verformungskriterien definiert sind. Dabei zeigt sich, daß mathematische Modelle auf der Grundlage von Extremalprinzipien und unter Einbeziehung der mathematischen Optimierung effektiv und hinreichend universell formuliert werden können. Wie Beispielrechnungen zeigen, ist die Beurteilung der Tragfähigkeit unter Berücksichtigung von Deformationsbegrenzungen von entscheidender Bedeutung, um Fehleinschätzungen der Tragsicherheit zu vermeiden. KW - Tragwerk KW - Nichtlineares Phänomen KW - Optimierung Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-4438 ER - TY - CHAP A1 - Raue, Erich T1 - Anwendung der mathematischen Optimierung bei der Modellbildung und Analyse des nichtlinearen Tragverhaltens von Stahlbetontragwerken N2 - In den zurückliegenden Jahren wurden an der Professur Massivbau I umfangreiche Untersuchungen zur Modellbildung und rechnerischen Erfassung des Tragverhaltens von Tragwerken und Tragwerkselementen aus Stahlbeton und Spannbeton unter Berücksichtigung von Rißbildungen und Plastizierungen durchgeführt. Diesen Untersuchungen liegt als einheitliches methodisches Konzept der mathematischen Problembeschreibung und Problemlösung die mathematische Optimierung zugrunde. Bereits anläßlich des IKM 1994 [1] hatte der Verfasser Gelegenheit, zusammenfassend über Ergebnisse bei der Anwendung der mathematischen Optimierung im Bereich der nichtlinearen Tragwerksanalyse zu berichten. Der vorliegende Beitrag, soll einen Überblick über seitdem untersuchte Problemkreise und dabei gewonnene Ergebnisse und Erfahrungen vermitteln. Bei der Anwendung der linearen und quadratischen Optimierung sind wegen der geforderten Linearität der Nebenbedingungen Vereinfachungen bei der Modellbildung des stahlbetonspezifischen Tragverhaltens unumgänglich. Besonders betroffen sind die Ansätze zur Beschreibungen des Materialverhaltens. Durch den Einsatz allgemeiner nichtlinearer mathematischer Optimierungsmethoden lässt sich eine methodisch bedingte Linearisierung des Berechnungsmodells umgehen.... KW - Tragwerk KW - Stahlbeton KW - Tragverhalten KW - Nichtlineares Phänomen KW - Modellierung KW - Optimierung Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-3717 ER - TY - CHAP A1 - Müller, Karl-Heinz A1 - Broßmann, Marko T1 - Berücksichtigung des zeitlich zufälligen Lastverhaltens und zufälliger Systemeigenschaften bei der adaptiven Grenzlastanalyse T1 - Adaptive Grenzlastanalyse von Stahlbetontragwerken mit stochastischem Strukturverhalten unter zeitlich zufälligen Lasten N2 - Werden bei der Tragwerksauslegung Schnittgrößenumlagerungen infolge Plastizierungen zugelassen, dann ist die Lastintensität durch die Einhaltung von entsprechenden Grenzzustandskriterien, passend zum physikalisch nichtlinearen Tragverhalten, zu begrenzen. Für Tragwerke, die von mehreren unabhängig voneinander, wiederholt und in beliebiger Reihenfolge auftretenden Lasten beansprucht werden, stellt die adaptive Grenzlast (Einspiellast), ausgedrückt durch den adaptiven Grenzlastfaktor, ein geeignetes Grenzzustandskriterium dar. Bedingt durch zufällige Systemeigenschaften und zeitlich zufälliges Lastverhalten stellt der adaptive Grenzlastfaktor eine Zufallsgröße dar. Für die Bestimmung des stochastischen adaptiven Grenzlastfaktors und der Versagenswahrscheinlichkeit gegenüber dem Grenzzustand der Adaption für einen Zeitraum [0,T] werden die mathematische Optimierung (mechanische Problemlösung) und die Monte-Carlo-Simulation (stochastische Problemlösung) herangezogen, wobei eine Überführung von zeitvarianten Lastmodellen in äquivalente zeitinvariante Lastmodelle erforderlich wird. Am Beispiel eines eingespannten Stahlbetonrahmens wird untersucht, wie sich eine unterschiedliche stochastische Modellbildung des Tragwerks und eine unterschiedliche Vorgehensweise bei der Überlagerung von Extremwerten der Belastung auf die Beurteilung der Versagenswahrscheinlichkeit des Tragwerks für verschiedene Lebensdauern auswirken. Im Ergebnis dieser Untersuchungen zeigt sich, dass sich die Versagenswahrscheinlichkeit signifikant erhöht, wenn stochastische Tragwerkseigenschaften in Ansatz gebracht werden. Die größte Bedeutung besitzt dabei die Zufälligkeit der Zugfestigkeit der Bewehrung. Alle anderen Zufallsgrößen beeinflussen die Versagenswahrscheinlichkeit nur in ihrer Gesamtheit, einzeln betrachtet sind sie nahezu bedeutungslos. Es stellt sich weiterhin heraus, dass eine vereinfachte Überlagerung der Last-Extremwerte zu einer deutlichen Überschätzung der Versagenswahrscheinlichkeit führt und somit als konservatives Modell zu bewerten ist. KW - Tragwerk KW - Stahlbeton KW - Tragverhalten KW - Wahrscheinlichkeitsrechnung KW - Belastung KW - Zufallsvariable Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-3372 ER - TY - CHAP A1 - Müller, Karl-Heinz T1 - Sicherheitsbeurteilung der Grenzlastzustände von Stahlbetontragwerken N2 - Die Berücksichtigung stochastischer System- und Lastparameter bei der nach EC zulässigen Analyse des Tragwerksverhaltens unter Berücksichtigung globalen nichtlinearen Systemverhaltens sind notwendig, da dies ein anderes Sicherheitskonzept erfordert. Wird der plastische Grenzlastfaktor (PGLF), der die Ausnutzung der Systemkapazitäten bis zum Kollaps ermöglicht, zur Grenzzustandsbeurteilung herangezogen, wird dies besonders deutlich. Für das Modell eines ebenen Stahlbetontragwerks wird starr-ideal-plastisches Materialverhalten vorausgesetzt. Die Bestimmung des PGLFs für ein gegebenes Lastbild kann ausgehend von einem Extremalprinzip über die Lösung einer Optimierungsaufgabe erfolgen. Diese direkte Bestimmung des Kollapses bereitet aber bei der stochastischen Analyse Schwierigkeiten, da die zugehörigen Grenzzustandsgleichungen (GZG) nicht gutartig sind. Es wird die stochastische Methode des Multi-Modal Importance Sampling (MMIS) vorgeschlagen, die unter Berücksichtigung der Eigenschaften dieses mechanischen Modells die Versagenswahrscheinlichkeit bestimmt, d.h. das Verfahren nimmt auf die nur stückweise Stetigkeit GZG des speziellen Problems Rücksicht. Es setzt die zugehörige Grenzzustandsfunktion voraus. Die wesentlichen Bemessungspunkte werden durch Anwendung des Betaverfahrens gesucht und dann mit einem Importance-Sampling-Algorithmus mit multimodaler Sampling Dichte die Versagenswahrscheinlichkeit bestimmt . Das Verfahren sucht und berücksichtigt die wesentlichen Versagensbereiche des Problems mit vertretbarem Aufwand. Verbesserungen könnten sowohl bei den enthaltenen Such- und Iterationsalgorithmen als auch bei der Wahl der einzelnen Sampling-Dichten erzielt werden, was Gegenstand weiterer Untersuchungen ist. KW - Tragwerk KW - Stahlbeton KW - Tragverhalten KW - Sicherheit KW - Wahrscheinlichkeitsrechnung Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-6059 ER - TY - JOUR A1 - Möller, B. A1 - Beer, M. A1 - Graf, W. A1 - Hoffmann, Alfred T1 - Sicherheitsbeurteilung von Tragwerken mit Fuzzy-Modellen N2 - Die Sicherheit von Tragwerken hängt von der zuverlässigen Modellierung sämtlicher Tragwerksparameter ab. Üblicherweise werden diese Parameter als deterministische oder stochastische Größen beschrieben. Stochastische Größen sind Zufallsgrößen, die unscharfe Informationen über Tragwerksparameter mit Hilfe von Dichtefunktionen erfassen. Nicht alle unscharfen Tragwerksparameter lassen sich als Zufallsgrößen darstellen. Sie können jedoch als Fuzzy-Größen modelliert werden. Fuzzy-Größen beschreiben unscharfe Tragwerksparameter als unscharfe Menge mit Bewertungsfunktion (Zugehörigkeitsfunktion). Die Fuzzy-Modellierung im Bauingenieurwesen umfaßt die Fuzzifizierung, die Fuzzy-Analyse, die Defuzzifizierung und die Sicherheitsbeurteilung. Sie erlaubt es, Tragwerke mit nicht-stochastischen unscharfen Eingangsinformationen zu untersuchen. Nicht-stochastische Eingangsinformationen treten sowohl bei bestehenden als auch bei neuen Tragwerken auf. Die unscharfen Ergebnisse der Fuzzy-Modellierung gestatten es, das Systemverhalten zutreffender zu beurteilen; sie sind die Ausgangspunkte für eine neue Sicherheitsbeurteilung auf der Grundlage der Möglichkeitstheorie. Bei der Fuzzy-Analyse ist die alpha-Diskretisierung vorteilhaft einsetzbar. Bei fehlender Monotonie der deterministischen Berechnungen und unter Berücksichtigung der Nichtlinearität wird die Fuzzy-Analyse mit Optimierungsalgorithmen durchgeführt. Zwei Beispiele werden diskutiert: die Lösung eines transzendenten Eigenwertproblems und eines linearen Gleichungssystems. Die Systemantworten der Fuzzy-Analyse werden der Sicherheitsbeurteilung zugrunde gelegt. Für ausgewählte physikalische Größen werden Versagensfunktionen definiert. Diese bewerten die Möglichkeit des Versagens. Mit Hilfe von Min-max-Operationen der Fuzzy-Set-Theorie erhält man aus Versagensfunktion und Fuzzy-Antwort die Versagensmöglichkeit bzw. die Überlebensmöglichkeit. Die ermittelte Versagensmöglichkeit repräsentiert die subjektive Beurteilung der Möglichkeit, daß das Ereignis &qout;Versagen&qout; eintritt. Beispiele zeigen die Unterschiede zwischen der Sicherheitsbeurteilung mittels Fuzzy-Modells und mittels deterministischen Modells. KW - Tragwerk KW - Sicherheit KW - Fuzzy-Logik Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-4625 ER - TY - JOUR A1 - Minch, M. J. A1 - Trochanowski, A. T1 - The numerical Modelling and Analysis of RC cracked Structures N2 - The purpose of this paper is to review model for finite element techniques for non-linear crack analysis of reinforced concrete beams and slabs. The non-linear behaviour of concrete and steel were described. Some calculations of >self-stress< for concrete and reinforced concrete beam was made. Current computational aspects are discussed. Several remarks for future studies are also given. The numerical model of the concrete and reinforced concrete was described. The paper shows the results of calculations on a reinforced concrete plane stress panel with cracks. The non-linear, numerical model of calculations of reinforced concrete was assumed. Using finite elements method some calculations were made. The results of calculations like displacements, stresses and cracking are shown on diagrams. They were compared with experimental results and other finding. Some conclusions about the described model and results of calculation are shown. KW - Tragwerk KW - Stahlbeton KW - Rissbildung KW - Modellierung Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-5278 ER -