TY - JOUR A1 - Chubukov, A. A1 - Kapitanov, Valeriy A1 - Monina, Olga A1 - Silyanov, Valentin A1 - Brannolte, Ulrich T1 - Simulation of Regional Mortality Rate in Road Accidents JF - Transportation Research Procedia 20 N2 - The paper gives the results of scientific research, which, being based on probabilistic and statistical modeling, identifies the relationship of certain socio-economic factors and the number of people killed in road accidents in the Russian Federation regions. It notes the identity of processes in various fields, in which there is loss of life. Scientific methods and techniques were used in the process of data processing and study findings: systematic approach, methods of system analysis (algorithmization, mathematical programming) and mathematical statistics. The scientific novelty lies in the formulation, formalization and solving problems related to the analysis of regional road traffic accidents, its modeling taking into account the factors of socio-economic impact. KW - Modellierung KW - correlation; factors; loss of life in accidents; modeling; Road traffic accidents; socio-economic aspect; statistical analysis Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170331-30956 UR - http://www.sciencedirect.com/science/article/pii/S2352146517300315 SP - 112 EP - 124 ER - TY - JOUR A1 - Dudek, Mariusz T1 - Modellierung der Verkehrsmittelwahl N2 - Die Zielstellung der Modal­Split­Betrachtungen läuft darauf hinaus, Entscheidungs-kriterien zu erarbeiten, nach denen die einzelnen Personen ihre Verkehrsmittel auswählen. In dieser Veröffentlichung wurden alle drei Gruppen der Modelle (klassische, verhaltensorientierte und der Analyse) der Verkehrsaufteilung kurz charakterisiert. Dann wurden vier ausgewählte Modelle genauer beschrieben. Zum Schluß wird das Modell der Verkehrsmittelwahl dargestellt , das für die Untersuchung der Verkehrsaufteilung in Krakau verwendet wurde . KW - Verkehrsmittelwahl KW - Modellierung Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-4817 ER - TY - JOUR A1 - Fink, Thomas T1 - Structural analysis, design and detailing using standard CAD software and standard building information model N2 - This paper describes the concept of a german commercial software package developed for the needs of structural engineers. Using a standard CAD software as user interface for all geometrical data and to save all important input data, there is a natural link to upcoming building information models. KW - Bauindustrie KW - CAD KW - Bauwerk KW - Modellierung Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2702 ER - TY - JOUR A1 - Fischer, A. A1 - Steinhage, V. T1 - Ein modellbasiertes Konzept zur städteplanerischen Kartierung durch digitale Bildanalyse N2 - There is an increasing need for 3D building extraction from aerial images for various applications such astown planning, environmental- and property-related studies. Aerial images usually reveal on one hand a certain amount of information not relevant for the given task of building extraction like vegetation, cars etc. On the other hand there is a loss of relevant information due to occlusions, low contrasts or disadvantageous perspectives. Therefore a promising concept for automated building reconstruction must incorporate a suffciantly complete model of the objects of interest. We propose a model-based approach to 3D building extraction from aerial images which reveals a tight coupling between a generic 3D object model and an explicit 2D image model. The generic object model employes domain specific volumetric primitives (i. e. building part models) and combination schemes. To cover the gap between 3D object models and 2D image data the image model is employed to predict the projective building appearences in aerial images. We present a strategy for a model-based building extraction based on the recognition-by-components principle and show first experimental results derived from international test sets KW - Stadtplanung KW - Kartierung KW - Bildanalyse KW - Modellierung Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-4870 ER - TY - JOUR A1 - Guo, Hongwei A1 - Alajlan, Naif A1 - Zhuang, Xiaoying A1 - Rabczuk, Timon T1 - Physics-informed deep learning for three-dimensional transient heat transfer analysis of functionally graded materials JF - Computational Mechanics N2 - We present a physics-informed deep learning model for the transient heat transfer analysis of three-dimensional functionally graded materials (FGMs) employing a Runge–Kutta discrete time scheme. Firstly, the governing equation, associated boundary conditions and the initial condition for transient heat transfer analysis of FGMs with exponential material variations are presented. Then, the deep collocation method with the Runge–Kutta integration scheme for transient analysis is introduced. The prior physics that helps to generalize the physics-informed deep learning model is introduced by constraining the temperature variable with discrete time schemes and initial/boundary conditions. Further the fitted activation functions suitable for dynamic analysis are presented. Finally, we validate our approach through several numerical examples on FGMs with irregular shapes and a variety of boundary conditions. From numerical experiments, the predicted results with PIDL demonstrate well agreement with analytical solutions and other numerical methods in predicting of both temperature and flux distributions and can be adaptive to transient analysis of FGMs with different shapes, which can be the promising surrogate model in transient dynamic analysis. KW - Wärmeübergang KW - Deep Learning KW - Modellierung KW - physics-informed activation function KW - heat transfer KW - functionally graded materials Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230517-63666 UR - https://link.springer.com/article/10.1007/s00466-023-02287-x VL - 2023 SP - 1 EP - 12 PB - Springer CY - Berlin ER - TY - JOUR A1 - Gürlebeck, Klaus A1 - Legatiuk, Dmitrii A1 - Nilsson, Henrik A1 - Smarsly, Kay T1 - Conceptual modelling: Towards detecting modelling errors in engineering applications JF - Mathematical Methods in Applied Sciences N2 - Rapid advancements of modern technologies put high demands on mathematical modelling of engineering systems. Typically, systems are no longer “simple” objects, but rather coupled systems involving multiphysics phenomena, the modelling of which involves coupling of models that describe different phenomena. After constructing a mathematical model, it is essential to analyse the correctness of the coupled models and to detect modelling errors compromising the final modelling result. Broadly, there are two classes of modelling errors: (a) errors related to abstract modelling, eg, conceptual errors concerning the coherence of a model as a whole and (b) errors related to concrete modelling or instance modelling, eg, questions of approximation quality and implementation. Instance modelling errors, on the one hand, are relatively well understood. Abstract modelling errors, on the other, are not appropriately addressed by modern modelling methodologies. The aim of this paper is to initiate a discussion on abstract approaches and their usability for mathematical modelling of engineering systems with the goal of making it possible to catch conceptual modelling errors early and automatically by computer assistant tools. To that end, we argue that it is necessary to identify and employ suitable mathematical abstractions to capture an accurate conceptual description of the process of modelling engineering systems. KW - Angewandte Mathematik KW - Angewandte Informatik KW - Ingenieurwissenschaften KW - Modellierung KW - engineering KW - abstraction KW - modelling KW - formal approaches KW - type theory Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200110-40614 UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.5934 SP - 1 EP - 10 ER - TY - JOUR A1 - Kazakevitch, M. I. A1 - Kulyabko, V. V. A1 - Dubichvost, A. A. T1 - The discrete dynamic Models of the Interaction of complex - composite Structures with the dynamic Loads N2 - In the given paper the generalized formulation of the problem of computer modelling of the complex-composite structure interaction with different types of dynamic loads and effects is discussed. Here the analysis is given as for the usage of some universal computing systems for the solution of such problems. Also if is shown that the quantification of the dynamic models of the complex-composite systems with the variable structure, depending on the character and intensivity of the effects, is necessary. The different variants of the joint and the space structure element modelling are gested. It allows to consider the complex modes of the joint bending-torsional oscillations of such structures as bridges, towers, high-rise buildings. The peculiarities of the modelling and testing of some problems of the objects aerodynamics and the interaction of the frameworks constructions with shock and movable loads are considered. In this paper the examples of the complex-composite structure dynamic analysis are shown. It is achieved by means of some special methods of the input of the real inducements and loads of the exploitated analog-object into the computing model. The suggested models found a wide use both at the design of new structures and the dynamic monitoring of the exploitated structures. KW - Verbundtragwerk KW - Dynamische Belastung KW - Wechselwirkung KW - Modellierung Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-5219 ER - TY - JOUR A1 - Kiviniemi, Arto A1 - Fischer, Martin T1 - Requirements Management Interface to Building Product Models N2 - In current AEC practice client requirements are typically recorded in a building program, which, depending on the building type, covers various aspects from the overall goals, activities and spatial needs to very detailed material and condition requirements. This documentation is used as the starting point of the design process, but as the design progresses, it is usually left aside and changes are made incrementally based on the previous design solution. These incremental small changes can lead to a solution that may no longer meet the original requirements. In addition, design is by nature an iterative process and the proposed solutions often also cause evolution in the client requirements. However, the requirements documentation is usually not updated accordingly. Finding the latest updates and evolution of the requirements from the documentation is very difficult, if not impossible. This process can lead to an end result, which is significantly different from the documented requirements. Some important requirements may not be satisfied, and even if the design process was based on agreed-upon changes in the scope and requirements, differences in the requirements documents and in the completed building can lead to well-justified doubts about the quality of the design and construction process... KW - Produktmodell KW - Simulation KW - Bautechnik KW - Bauwerk KW - Modellierung Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2427 ER - TY - JOUR A1 - Kreibich, H. A1 - Piroth, K. A1 - Seifert, I. A1 - Maiwald, Holger A1 - Kunert, U. A1 - Schwarz, Jochen A1 - Merz, B. A1 - Thieken, A. H. T1 - Is flow velocity a significant parameter in flood damage modelling? JF - Natural Hazards and Earth System Science N2 - Flow velocity is generally presumed to influence flood damage. However, this influence is hardly quantified and virtually no damage models take it into account. Therefore, the influences of flow velocity, water depth and combinations of these two impact parameters on various types of flood damage were investigated in five communities affected by the Elbe catchment flood in Germany in 2002. 2-D hydraulic models with high to medium spatial resolutions were used to calculate the impact parameters at the sites in which damage occurred. A significant influence of flow velocity on structural damage, particularly on roads, could be shown in contrast to a minor influence on monetary losses and business interruption. Forecasts of structural damage to road infrastructure should be based on flow velocity alone. The energy head is suggested as a suitable flood impact parameter for reliable forecasting of structural damage to residential buildings above a critical impact level of 2m of energy head or water depth. However, general consideration of flow velocity in flood damage modelling, particularly for estimating monetary loss, cannot be recommended. KW - Strömungsgeschwindigkeit KW - Überschwemmung KW - Schaden KW - Modellierung Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170425-31455 UR - http://www.nat-hazards-earth-syst-sci.net/9/1679/2009/nhess-9-1679-2009.pdf SP - 1679 EP - 1692 ER - TY - JOUR A1 - Legatiuk, Dmitrii T1 - Mathematical Modelling by Help of Category Theory: Models and Relations between Them JF - mathematics N2 - The growing complexity of modern practical problems puts high demand on mathematical modelling. Given that various models can be used for modelling one physical phenomenon, the role of model comparison and model choice is becoming particularly important. Methods for model comparison and model choice typically used in practical applications nowadays are computationbased, and thus time consuming and computationally costly. Therefore, it is necessary to develop other approaches to working abstractly, i.e., without computations, with mathematical models. An abstract description of mathematical models can be achieved by the help of abstract mathematics, implying formalisation of models and relations between them. In this paper, a category theory-based approach to mathematical modelling is proposed. In this way, mathematical models are formalised in the language of categories, relations between the models are formally defined and several practically relevant properties are introduced on the level of categories. Finally, an illustrative example is presented, underlying how the category-theory based approach can be used in practice. Further, all constructions presented in this paper are also discussed from a modelling point of view by making explicit the link to concrete modelling scenarios. KW - Kategorientheorie KW - Modellierung KW - Modellierungsmethode KW - OA-Publikationsfonds2021 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210817-44844 UR - https://www.mdpi.com/2227-7390/9/16/1946?type=check_update&version=1 VL - 2021 IS - volume 9, issue 16, article 1946 PB - MDPI CY - Basel ER -