TY - JOUR A1 - Nguyen-Xuan, Hung A1 - Nguyen, Hiep Vinh A1 - Bordas, Stéphane Pierre Alain A1 - Rabczuk, Timon A1 - Duflot, Marc T1 - A cell-based smoothed finite element method for three dimensional solid structures JF - KSCE Journal of Civil Engineering N2 - This paper extends further the strain smoothing technique in finite elements to 8-noded hexahedral elements (CS-FEM-H8). The idea behind the present method is similar to the cell-based smoothed 4-noded quadrilateral finite elements (CS-FEM-Q4). In CSFEM, the smoothing domains are created based on elements, and each element can be further subdivided into 1 or several smoothing cells. It is observed that: 1) The CS-FEM using a single smoothing cell can produce higher stress accuracy, but insufficient rank and poor displacement accuracy; 2) The CS-FEM using several smoothing cells has proper rank, good displacement accuracy, but lower stress accuracy, especially for nearly incompressible and bending dominant problems. We therefore propose 1) an extension of strain smoothing to 8-noded hexahedral elements and 2) an alternative CS-FEM form, which associates the single smoothing cell issue with multi-smoothing cell one via a stabilization technique. Several numerical examples are provided to show the reliability and accuracy of the present formulation. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 U6 - http://dx.doi.org/10.1007/s12205-012-1515-7 SP - 1230 EP - 1242 ER - TY - JOUR A1 - Talebi, Hossein A1 - Silani, Mohammad A1 - Bordas, Stéphane Pierre Alain A1 - Kerfriden, Pierre A1 - Rabczuk, Timon T1 - A computational library for multiscale modeling of material failure JF - Computational Mechanics N2 - A computational library for multiscale modeling of material failure KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Yang, Shih-Wei A1 - Budarapu, Pattabhi Ramaiah A1 - Mahapatra, D.R. A1 - Bordas, Stéphane Pierre Alain A1 - Zi, Goangseup A1 - Rabczuk, Timon T1 - A Meshless Adaptive Multiscale Method for Fracture JF - Computational Materials Science N2 - A Meshless Adaptive Multiscale Method for Fracture KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 382 EP - 395 ER - TY - JOUR A1 - Nguyen-Xuan, Hung A1 - Rabczuk, Timon A1 - Nguyen-Thanh, Nhon A1 - Nguyen-Thoi, T. A1 - Bordas, Stéphane Pierre Alain T1 - A node-based smoothed finite element method (NS-FEM) for analysis of Reissner-Mindlin plates JF - Computational Mechanics N2 - A node-based smoothed finite element method (NS-FEM) for analysis of Reissner-Mindlin plates KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2010 SP - 679 EP - 701 ER - TY - JOUR A1 - Kerfriden, Pierre A1 - Goury, O. A1 - Rabczuk, Timon A1 - Bordas, Stéphane Pierre Alain T1 - A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics JF - Computer Methods in Applied Mechanics and Engineering N2 - A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 SP - 169 EP - 188 ER - TY - JOUR A1 - Budarapu, Pattabhi Ramaiah A1 - Gracie, Robert A1 - Bordas, Stéphane Pierre Alain A1 - Rabczuk, Timon T1 - An adaptive multiscale method for quasi-static crack growth JF - Computational Mechanics N2 - This paper proposes an adaptive atomistic- continuum numerical method for quasi-static crack growth. The phantom node method is used to model the crack in the continuum region and a molecular statics model is used near the crack tip. To ensure self-consistency in the bulk, a virtual atom cluster is used to model the material of the coarse scale. The coupling between the coarse scale and fine scale is realized through ghost atoms. The ghost atom positions are interpolated from the coarse scale solution and enforced as boundary conditions on the fine scale. The fine scale region is adaptively enlarged as the crack propagates and the region behind the crack tip is adaptively coarsened. An energy criterion is used to detect the crack tip location. The triangular lattice in the fine scale region corresponds to the lattice structure of the (111) plane of an FCC crystal. The Lennard-Jones potential is used to model the atom–atom interactions. The method is implemented in two dimensions. The results are compared to pure atomistic simulations; they show excellent agreement. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 U6 - http://dx.doi.org/10.1007/s00466-013-0952-6 SP - 1129 EP - 1148 ER - TY - JOUR A1 - Nguyen-Xuan, Hung A1 - Liu, G.R. A1 - Bordas, Stéphane Pierre Alain A1 - Natarajan, S. A1 - Rabczuk, Timon T1 - An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order JF - Computer Methods in Applied Mechanics and Engineering N2 - An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 SP - 252 EP - 273 ER - TY - JOUR A1 - Nguyen-Thanh, Nhon A1 - Rabczuk, Timon A1 - Nguyen-Xuan, Hung A1 - Bordas, Stéphane Pierre Alain T1 - An alternative alpha finite element method (A?FEM) free and forced vibration analysis of solids using triangular meshes JF - Journal of Computational and Applied Mathematics N2 - An alternative alpha finite element method (A?FEM) free and forced vibration analysis of solids using triangular meshes KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2009 SP - 2112 EP - 2135 ER - TY - JOUR A1 - Nguyen-Thanh, Nhon A1 - Rabczuk, Timon A1 - Nguyen-Xuan, Hung A1 - Bordas, Stéphane Pierre Alain T1 - An alternative alpha finite element method with stabilized discrete shear gap technique for analysis of Mindlin-Reissner plates JF - Finite Elements in Analysis & Design N2 - An alternative alpha finite element method with stabilized discrete shear gap technique for analysis of Mindlin-Reissner plates KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2011 SP - 519 EP - 535 ER - TY - JOUR A1 - Simpson, R. A1 - Bordas, Stéphane Pierre Alain A1 - Trevelyan, J. A1 - Kerfriden, Pierre A1 - Rabczuk, Timon T1 - An Isogeometric Boundary Element Method for elastostatic analysis JF - Computer Methods in Applied Mechanics and Engineering N2 - The concept of isogeometric analysis, where functions that are used to describe geometry in CAD software are used to approximate the unknown fields in numerical simulations, has received great attention in recent years. The method has the potential to have profound impact on engineering design, since the task of meshing, which in some cases can add significant overhead, has been circumvented. Much of the research effort has been focused on finite element implementations of the isogeometric concept, but at present, little has been seen on the application to the Boundary Element Method. The current paper proposes an Isogeometric Boundary Element Method (BEM), which we term IGABEM, applied to two-dimensional elastostatic problems using Non-Uniform Rational B-Splines (NURBS). We find it is a natural fit with the isogeometric concept since both the NURBS approximation and BEM deal with quantities entirely on the boundary. The method is verified against analytical solutions where it is seen that superior accuracies are achieved over a conventional quadratic isoparametric BEM implementation. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.cma.2011.08.008 ER -