TY - THES A1 - Hanna, John T1 - Computational Fracture Modeling and Design of Encapsulation-Based Self-Healing Concrete Using XFEM and Cohesive Surface Technique N2 - Encapsulation-based self-healing concrete (SHC) is the most promising technique for providing a self-healing mechanism to concrete. This is due to its capacity to heal fractures effectively without human interventions, extending the operational life and lowering maintenance costs. The healing mechanism is created by embedding capsules containing the healing agent inside the concrete. The healing agent will be released once the capsules are fractured and the healing occurs in the vicinity of the damaged part. The healing efficiency of the SHC is still not clear and depends on several factors; in the case of microcapsules SHC the fracture of microcapsules is the most important aspect to release the healing agents and hence heal the cracks. This study contributes to verifying the healing efficiency of SHC and the fracture mechanism of the microcapsules. Extended finite element method (XFEM) is a flexible, and powerful discrete crack method that allows crack propagation without the requirement for re-meshing and has been shown high accuracy for modeling fracture in concrete. In this thesis, a computational fracture modeling approach of Encapsulation-based SHC is proposed based on the XFEM and cohesive surface technique (CS) to study the healing efficiency and the potential of fracture and debonding of the microcapsules or the solidified healing agents from the concrete matrix as well. The concrete matrix and a microcapsule shell both are modeled by the XFEM and combined together by CS. The effects of the healed-crack length, the interfacial fracture properties, and microcapsule size on the load carrying capability and fracture pattern of the SHC have been studied. The obtained results are compared to those obtained from the zero thickness cohesive element approach to demonstrate the significant accuracy and the validity of the proposed simulation. The present fracture simulation is developed to study the influence of the capsular clustering on the fracture mechanism by varying the contact surface area of the CS between the microcapsule shell and the concrete matrix. The proposed fracture simulation is expanded to 3D simulations to validate the 2D computational simulations and to estimate the accuracy difference ratio between 2D and 3D simulations. In addition, a proposed design method is developed to design the size of the microcapsules consideration of a sufficient volume of healing agent to heal the expected crack width. This method is based on the configuration of the unit cell (UC), Representative Volume Element (RVE), Periodic Boundary Conditions (PBC), and associated them to the volume fraction (Vf) and the crack width as variables. The proposed microcapsule design is verified through computational fracture simulations. KW - Beton KW - Bruchverhalten KW - Finite-Elemente-Methode KW - Self-healing concrete KW - Computational fracture modeling KW - Capsular clustering; Design of microcapsules KW - XFEM KW - Cohesive surface technique KW - Mikrokapsel KW - Selbstheilendem Beton KW - Computermodellierung des Bruchverhaltens KW - Entwurf von Mikrokapseln KW - Kapselclustern KW - Erweiterte Finite-Elemente-Methode KW - Kohäsionsflächenverfahren Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221124-47467 ER - TY - THES A1 - Zacharias, Christin T1 - Numerical Simulation Models for Thermoelastic Damping Effects N2 - Finite Element Simulations of dynamically excited structures are mainly influenced by the mass, stiffness, and damping properties of the system, as well as external loads. The prediction quality of dynamic simulations of vibration-sensitive components depends significantly on the use of appropriate damping models. Damping phenomena have a decisive influence on the vibration amplitude and the frequencies of the vibrating structure. However, developing realistic damping models is challenging due to the multiple sources that cause energy dissipation, such as material damping, different types of friction, or various interactions with the environment. This thesis focuses on thermoelastic damping, which is the main cause of material damping in homogeneous materials. The effect is caused by temperature changes due to mechanical strains. In vibrating structures, temperature gradients arise in adjacent tension and compression areas. Depending on the vibration frequency, they result in heat flows, leading to increased entropy and the irreversible transformation of mechanical energy into thermal energy. The central objective of this thesis is the development of efficient simulation methods to incorporate thermoelastic damping in finite element analyses based on modal superposition. The thermoelastic loss factor is derived from the structure's mechanical mode shapes and eigenfrequencies. In subsequent analyses that are performed in the time and frequency domain, it is applied as modal damping. Two approaches are developed to determine the thermoelastic loss in thin-walled plate structures, as well as three-dimensional solid structures. The realistic representation of the dissipation effects is verified by comparing the simulation results with experimentally determined data. Therefore, an experimental setup is developed to measure material damping, excluding other sources of energy dissipation. The three-dimensional solid approach is based on the determination of the generated entropy and therefore the generated heat per vibration cycle, which is a measure for thermoelastic loss in relation to the total strain energy. For thin plate structures, the amount of bending energy in a modal deformation is calculated and summarized in the so-called Modal Bending Factor (MBF). The highest amount of thermoelastic loss occurs in the state of pure bending. Therefore, the MBF enables a quantitative classification of the mode shapes concerning the thermoelastic damping potential. The results of the developed simulations are in good agreement with the experimental results and are appropriate to predict thermoelastic loss factors. Both approaches are based on modal superposition with the advantage of a high computational efficiency. Overall, the modeling of thermoelastic damping represents an important component in a comprehensive damping model, which is necessary to perform realistic simulations of vibration processes. N2 - Die Finite-Elemente Simulation von dynamisch angeregten Strukturen wird im Wesentlich durch die Steifigkeits-, Massen- und Dämpfungseigenschaften des Systems sowie durch die äußere Belastung bestimmt. Die Vorhersagequalität von dynamischen Simulationen schwingungsanfälliger Bauteile hängt wesentlich von der Verwendung geeigneter Dämpfungsmodelle ab. Dämpfungsphänomene haben einen wesentlichen Einfluss auf die Schwingungsamplitude, die Frequenz und teilweise sogar die Existenz von Vibrationen. Allerdings ist die Entwicklung von realitätsnahen Dämpfungsmodellen oft schwierig, da eine Vielzahl von physikalischen Effekten zur Energiedissipation während eines Schwingungsvorgangs führt. Beispiele hierfür sind die Materialdämpfung, verschiedene Formen der Reibung sowie vielfältige Wechselwirkungen mit dem umgebenden Medium. Diese Dissertation befasst sich mit thermoelastischer Dämpfung, die in homogenen Materialien die dominante Ursache der Materialdämpfung darstellt. Der thermoelastische Effekt wird ausgelöst durch eine Temperaturänderung aufgrund mechanischer Spannungen. In der schwingenden Struktur entstehen während der Deformation Temperaturgradienten zwischen benachbarten Regionen unter Zug- und Druckbelastung. In Abhängigkeit von der Vibrationsfrequenz führen diese zu Wärmeströmen und irreversibler Umwandlung mechanischer in thermische Energie. Die Zielstellung dieser Arbeit besteht in der Entwicklung recheneffizienter Simulationsmethoden, um thermoelastische Dämpfung in zeitabhängigen Finite-Elemente Analysen, die auf modaler Superposition beruhen, zu integrieren. Der thermoelastische Verlustfaktor wird auf der Grundlage der mechanischen Eigenformen und -frequenzen bestimmt. In nachfolgenden Analysen im Zeit- und Frequenzbereich wird er als modaler Dämpfungsgrad verwendet. Zwei Ansätze werden entwickelt, um den thermoelastischen Verlustfaktor in dünn-wandigen Plattenstrukturen, sowie in dreidimensionalen Volumenbauteilen zu simulieren. Die realitätsnahe Vorhersage der Energiedissipation wird durch die Verifizierung an experimentellen Daten bestätigt. Dafür wird ein Versuchsaufbau entwickelt, der eine Messung von Materialdämpfung unter Ausschluss anderer Dissipationsquellen ermöglicht. Für den Fall der Volumenbauteile wird ein Ansatz verwendet, der auf der Berechnung der Entropieänderung und damit der erzeugte Wärmeenergie während eines Schwingungszyklus beruht. Im Verhältnis zur Formänderungsenergie ist dies ein Maß für die thermoelastische Dämpfung. Für dünne Plattenstrukturen wird der Anteil an Biegeenergie in der Eigenform bestimmt und im sogenannten modalen Biegefaktor (MBF) zusammengefasst. Der maximale Grad an thermoelastischer Dämpfung kann im Zustand reiner Biegung auftreten, sodass der MBF eine quantitative Klassifikation der Eigenformen hinsichtlich ihres thermoelastischen Dämpfungspotentials zulässt. Die Ergebnisse der entwickelten Simulationsmethoden stimmen sehr gut mit den experimentellen Daten überein und sind geeignet, um thermoelastische Dämpfungsgrade vorherzusagen. Beide Ansätze basieren auf modaler Superposition und ermöglichen damit zeitabhängige Simulationen mit einer hohen Recheneffizienz. Insgesamt stellt die Modellierung der thermoelastischen Dämpfung einen Baustein in einem umfassenden Dämpfungsmodell dar, welches zur realitätsnahen Simulation von Schwingungsvorgängen notwendig ist. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2022,8 KW - Werkstoffdämpfung KW - Finite-Elemente-Methode KW - Strukturdynamik KW - Thermoelastic damping KW - modal damping KW - decay experiments KW - energy dissipation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221116-47352 ER - TY - THES A1 - Habtemariam, Abinet Kifle T1 - Numerical Demolition Analysis of a Slender Guyed Antenna Mast N2 - The main purpose of the thesis is to ensure the safe demolition of old guyed antenna masts that are located in different parts of Germany. The major problem in demolition of this masts is the falling down of the masts in unexpected direction because of buckling problem. The objective of this thesis is development of a numerical models using finite element method (FEM) and assuring a controlled collapse by coming up with different time setups for the detonation of explosives which are responsible for cutting down the cables. The result of this thesis will avoid unexpected outcomes during the demolition processes and prevent risk of collapsing of the mast over near by structures. KW - Abbruch KW - Finite-Elemente-Methode KW - Optimierung KW - Demolition KW - Guyed antenna masts KW - Explicit finite element method KW - Optimization Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210723-44609 ER - TY - THES A1 - Hossain, Md Naim T1 - Isogeometric analysis based on Geometry Independent Field approximaTion (GIFT) and Polynomial Splines over Hierarchical T-meshes N2 - This thesis addresses an adaptive higher-order method based on a Geometry Independent Field approximatTion(GIFT) of polynomial/rationals plines over hierarchical T-meshes(PHT/RHT-splines). In isogeometric analysis, basis functions used for constructing geometric models in computer-aided design(CAD) are also employed to discretize the partial differential equations(PDEs) for numerical analysis. Non-uniform rational B-Splines(NURBS) are the most commonly used basis functions in CAD. However, they may not be ideal for numerical analysis where local refinement is required. The alternative method GIFT deploys different splines for geometry and numerical analysis. NURBS are utilized for the geometry representation, while for the field solution, PHT/RHT-splines are used. PHT-splines not only inherit the useful properties of B-splines and NURBS, but also possess the capabilities of local refinement and hierarchical structure. The smooth basis function properties of PHT-splines make them suitable for analysis purposes. While most problems considered in isogeometric analysis can be solved efficiently when the solution is smooth, many non-trivial problems have rough solutions. For example, this can be caused by the presence of re-entrant corners in the domain. For such problems, a tensor-product basis (as in the case of NURBS) is less suitable for resolving the singularities that appear since refinement propagates throughout the computational domain. Hierarchical bases and local refinement (as in the case of PHT-splines) allow for a more efficient way to resolve these singularities by adding more degrees of freedom where they are necessary. In order to drive the adaptive refinement, an efficient recovery-based error estimator is proposed in this thesis. The estimator produces a recovery solution which is a more accurate approximation than the computed numerical solution. Several two- and three-dimensional numerical investigations with PHT-splines of higher order and continuity prove that the proposed method is capable of obtaining results with higher accuracy, better convergence, fewer degrees of freedom and less computational cost than NURBS for smooth solution problems. The adaptive GIFT method utilizing PHT-splines with the recovery-based error estimator is used for solutions with discontinuities or singularities where adaptive local refinement in particular domains of interest achieves higher accuracy with fewer degrees of freedom. This method also proves that it can handle complicated multi-patch domains for two- and three-dimensional problems outperforming uniform refinement in terms of degrees of freedom and computational cost. T2 - Die isogeometrische Analysis basierend auf der geometrieunabhängigen Feldnäherung (GIFT)und polynomialen Splines über hierarchischen T-Netzen KW - Finite-Elemente-Methode KW - Isogeometrc Analysis KW - Geometry Independent Field Approximation KW - Polynomial Splines over Hierarchical T-meshes KW - Recovery Based Error Estimator Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20191129-40376 ER - TY - THES A1 - Keßler, Andrea T1 - Matrix-free voxel-based finite element method for materials with heterogeneous microstructures T1 - Matrixfreie voxelbasierte Finite-Elemente-Methode für Materialien mit komplizierter Mikrostruktur N2 - Modern image detection techniques such as micro computer tomography (μCT), magnetic resonance imaging (MRI) and scanning electron microscopy (SEM) provide us with high resolution images of the microstructure of materials in a non-invasive and convenient way. They form the basis for the geometrical models of high-resolution analysis, so called image-based analysis. However especially in 3D, discretizations of these models reach easily the size of 100 Mill. degrees of freedoms and require extensive hardware resources in terms of main memory and computing power to solve the numerical model. Consequently, the focus of this work is to combine and adapt numerical solution methods to reduce the memory demand first and then the computation time and therewith enable an execution of the image-based analysis on modern computer desktops. Hence, the numerical model is a straightforward grid discretization of the voxel-based (pixels with a third dimension) geometry which omits the boundary detection algorithms and allows reduced storage of the finite element data structure and a matrix-free solution algorithm. This in turn reduce the effort of almost all applied grid-based solution techniques and results in memory efficient and numerically stable algorithms for the microstructural models. Two variants of the matrix-free algorithm are presented. The efficient iterative solution method of conjugate gradients is used with matrix-free applicable preconditioners such as the Jacobi and the especially suited multigrid method. The jagged material boundaries of the voxel-based mesh are smoothed through embedded boundary elements which contain different material information at the integration point and are integrated sub-cell wise though without additional boundary detection. The efficiency of the matrix-free methods can be retained. N2 - Moderne bildgebende Verfahren wie Mikro-Computertomographie (μCT), Magnetresonanztomographie (MRT) und Rasterelektronenmikroskopie (SEM) liefern nicht-invasiv hochauflösende Bilder der Mikrostruktur von Materialien. Sie bilden die Grundlage der geometrischen Modelle der hochauflösenden bildbasierten Analysis. Allerdings erreichen vor allem in 3D die Diskretisierungen dieser Modelle leicht die Größe von 100 Mill. Freiheitsgraden und erfordern umfangreiche Hardware-Ressourcen in Bezug auf Hauptspeicher und Rechenleistung, um das numerische Modell zu lösen. Der Fokus dieser Arbeit liegt daher darin, numerische Lösungsmethoden zu kombinieren und anzupassen, um den Speicherplatzbedarf und die Rechenzeit zu reduzieren und damit eine Ausführung der bildbasierten Analyse auf modernen Computer-Desktops zu ermöglichen. Daher ist als numerisches Modell eine einfache Gitterdiskretisierung der voxelbasierten (Pixel mit der Tiefe als dritten Dimension) Geometrie gewählt, die die Oberflächenerstellung weglässt und eine reduzierte Speicherung der finiten Elementen und einen matrixfreien Lösungsalgorithmus ermöglicht. Dies wiederum verringert den Aufwand von fast allen angewandten gitterbasierten Lösungsverfahren und führt zu Speichereffizienz und numerisch stabilen Algorithmen für die Mikrostrukturmodelle. Es werden zwei Varianten der Anpassung der matrixfreien Lösung präsentiert, die Element-für-Element Methode und eine Knoten-Kanten-Variante. Die Methode der konjugierten Gradienten in Kombination mit dem Mehrgitterverfahren als sehr effizienten Vorkonditionierer wird für den matrixfreien Lösungsalgorithmus adaptiert. Der stufige Verlauf der Materialgrenzen durch die voxelbasierte Diskretisierung wird durch Elemente geglättet, die am Integrationspunkt unterschiedliche Materialinformationen enthalten und über Teilzellen integriert werden (embedded boundary elements). Die Effizienz der matrixfreien Verfahren bleibt erhalten. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2018,7 KW - Dissertation KW - Finite-Elemente-Methode KW - Konjugierte-Gradienten-Methode KW - Mehrgitterverfahren KW - conjugate gradient method KW - multigrid method KW - grid-based KW - finite element method KW - matrix-free Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190116-38448 ER - TY - THES A1 - Msekh, Mohammed Abdulrazzak T1 - Phase Field Modeling for Fracture with Applications to Homogeneous and Heterogeneous Materials N2 - The thesis presents an implementation including different applications of a variational-based approach for gradient type standard dissipative solids. Phase field model for brittle fracture is an application of the variational-based framework for gradient type solids. This model allows the prediction of different crack topologies and states. Of significant concern is the application of theoretical and numerical formulation of the phase field modeling into the commercial finite element software Abaqus in 2D and 3D. The fully coupled incremental variational formulation of phase field method is implemented by using the UEL and UMAT subroutines of Abaqus. The phase field method considerably reduces the implementation complexity of fracture problems as it removes the need for numerical tracking of discontinuities in the displacement field that are characteristic of discrete crack methods. This is accomplished by replacing the sharp discontinuities with a scalar damage phase field representing the diffuse crack topology wherein the amount of diffusion is controlled by a regularization parameter. The nonlinear coupled system consisting of the linear momentum equation and a diffusion type equation governing the phase field evolution is solved simultaneously via a Newton- Raphson approach. Post-processing of simulation results to be used as visualization module is performed via an additional UMAT subroutine implemented in the standard Abaqus viewer. In the same context, we propose a simple yet effective algorithm to initiate and propagate cracks in 2D geometries which is independent of both particular constitutive laws and specific element technology and dimension. It consists of a localization limiter in the form of the screened Poisson equation with, optionally, local mesh refinement. A staggered scheme for standard equilibrium and screened Cauchy equations is used. The remeshing part of the algorithm consists of a sequence of mesh subdivision and element erosion steps. Element subdivision is based on edge split operations using a given constitutive quantity (either damage or void fraction). Mesh smoothing makes use of edge contraction as function of a given constitutive quantity such as the principal stress or void fraction. To assess the robustness and accuracy of this algorithm, we use both quasi-brittle benchmarks and ductile tests. Furthermore, we introduce a computational approach regarding mechanical loading in microscale on an inelastically deforming composite material. The nanocomposites material of fully exfoliated clay/epoxy is shaped to predict macroscopic elastic and fracture related material parameters based on their fine–scale features. Two different configurations of polymer nanocomposites material (PNCs) have been studied. These configurations are fully bonded PNCs and PNCs with an interphase zone formation between the matrix and the clay reinforcement. The representative volume element of PNCs specimens with different clay weight contents, different aspect ratios, and different interphase zone thicknesses are generated by adopting Python scripting. Different constitutive models are employed for the matrix, the clay platelets, and the interphase zones. The brittle fracture behavior of the epoxy matrix and the interphase zones material are modeled using the phase field approach, whereas the stiff silicate clay platelets of the composite are designated as a linear elastic material. The comprehensive study investigates the elastic and fracture behavior of PNCs composites, in addition to predict Young’s modulus, tensile strength, fracture toughness, surface energy dissipation, and cracks surface area in the composite for different material parameters, geometry, and interphase zones properties and thicknesses. T2 - Phasenfeldmodellierung für Brüche mit Anwendungen auf homogene und heterogene Materialien KW - Finite-Elemente-Methode KW - Phase field model KW - Fracture KW - Abaqus KW - Finite Element Model Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170615-32291 ER - TY - JOUR A1 - Vu-Bac, N. A1 - Nguyen-Xuan, Hung A1 - Chen, Lei A1 - Lee, C.K. A1 - Zi, Goangseup A1 - Zhuang, Xiaoying A1 - Liu, G.R. A1 - Rabczuk, Timon T1 - A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics JF - Journal of Applied Mathematics N2 - This paper presents a novel numerical procedure based on the combination of an edge-based smoothed finite element (ES-FEM) with a phantom-node method for 2D linear elastic fracture mechanics. In the standard phantom-node method, the cracks are formulated by adding phantom nodes, and the cracked element is replaced by two new superimposed elements. This approach is quite simple to implement into existing explicit finite element programs. The shape functions associated with discontinuous elements are similar to those of the standard finite elements, which leads to certain simplification with implementing in the existing codes. The phantom-node method allows modeling discontinuities at an arbitrary location in the mesh. The ES-FEM model owns a close-to-exact stiffness that is much softer than lower-order finite element methods (FEM). Taking advantage of both the ES-FEM and the phantom-node method, we introduce an edge-based strain smoothing technique for the phantom-node method. Numerical results show that the proposed method achieves high accuracy compared with the extended finite element method (XFEM) and other reference solutions. KW - Finite-Elemente-Methode KW - Steifigkeit KW - Bruchmechanik KW - Riss Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170426-31676 ER - TY - JOUR A1 - Talebi, Hossein A1 - Zi, Goangseup A1 - Silani, Mohammad A1 - Samaniego, Esteban A1 - Rabczuk, Timon T1 - A simple circular cell method for multilevel finite element analysis JF - Journal of Applied Mathematics N2 - A simple multiscale analysis framework for heterogeneous solids based on a computational homogenization technique is presented. The macroscopic strain is linked kinematically to the boundary displacement of a circular or spherical representative volume which contains the microscopic information of the material. The macroscopic stress is obtained from the energy principle between the macroscopic scale and the microscopic scale. This new method is applied to several standard examples to show its accuracy and consistency of the method proposed. KW - Finite-Elemente-Methode KW - Feststoff Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170426-31639 ER - TY - JOUR A1 - Mortazavi, Bohayra A1 - Pereira, Luiz Felipe C. A1 - Jiang, Jin-Wu A1 - Rabczuk, Timon T1 - Modelling heat conduction in polycrystalline hexagonal boron-nitride films JF - Scientific Reports N2 - We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. KW - Wärmeleitfähigkeit KW - Bornitrid KW - Finite-Elemente-Methode Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170425-31534 ER - TY - JOUR A1 - Banihani, Suleiman A1 - Rabczuk, Timon A1 - Almomani, Thakir T1 - POD for real-time simulation of hyperelastic soft biological tissue using the point collocation method of finite spheres JF - Mathematical Problems in Engineering N2 - The point collocation method of finite spheres (PCMFS) is used to model the hyperelastic response of soft biological tissue in real time within the framework of virtual surgery simulation. The proper orthogonal decomposition (POD) model order reduction (MOR) technique was used to achieve reduced-order model of the problem, minimizing computational cost. The PCMFS is a physics-based meshfree numerical technique for real-time simulation of surgical procedures where the approximation functions are applied directly on the strong form of the boundary value problem without the need for integration, increasing computational efficiency. Since computational speed has a significant role in simulation of surgical procedures, the proposed technique was able to model realistic nonlinear behavior of organs in real time. Numerical results are shown to demonstrate the effectiveness of the new methodology through a comparison between full and reduced analyses for several nonlinear problems. It is shown that the proposed technique was able to achieve good agreement with the full model; moreover, the computational and data storage costs were significantly reduced. KW - Chirurgie KW - Finite-Elemente-Methode Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170413-31203 ER -