TY - JOUR A1 - Alsaad, Hayder A1 - Völker, Conrad T1 - Could the ductless personalized ventilation be an alternative to the regular ducted personalized ventilation? JF - Indoor Air N2 - This study investigates the performance of two systems: personalized ventilation (PV) and ductless personalized ventilation (DPV). Even though the literature indicates a compelling performance of PV, it is not often used in practice due to its impracticality. Therefore, the present study assesses the possibility of replacing the inflexible PV with DPV in office rooms equipped with displacement ventilation (DV) in the summer season. Numerical simulations were utilized to evaluate the inhaled concentration of pollutants when PV and DPV are used. The systems were compared in a simulated office with two occupants: a susceptible occupant and a source occupant. Three types of pollution were simulated: exhaled infectious air, dermally emitted contamination, and room contamination from a passive source. Results indicated that PV improved the inhaled air quality regardless of the location of the pollution source; a higher PV supply flow rate positively impacted the inhaled air quality. Contrarily, the performance of DPV was highly sensitive to the source location and the personalized flow rate. A higher DPV flow rate tends to decrease the inhaled air quality due to increased mixing of pollutants in the room. Moreover, both systems achieved better results when the personalized system of the source occupant was switched off. KW - Strömungsmechanik KW - Kontamination KW - Belüftung KW - Luftqualität KW - computational fluid dynamics KW - cross-contamination KW - ductless personalized ventilation KW - indoor air quality KW - tracer gas Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200805-42072 UR - https://onlinelibrary.wiley.com/doi/full/10.1111/ina.12720 VL - 2020 PB - John Wiley & Sons Ltd ER - TY - JOUR A1 - Alsaad, Hayder A1 - Völker, Conrad T1 - Performance evaluation of ductless personalized ventilation in comparison with desk fans using numerical simulations JF - Indoor Air N2 - The performance of ductless personalized ventilation (DPV) was compared to the performance of a typical desk fan since they are both stand-alone systems that allow the users to personalize their indoor environment. The two systems were evaluated using a validated computational fluid dynamics (CFD) model of an office room occupied by two users. To investigate the impact of DPV and the fan on the inhaled air quality, two types of contamination sources were modelled in the domain: an active source and a passive source. Additionally, the influence of the compared systems on thermal comfort was assessed using the coupling of CFD with the comfort model developed by the University of California, Berkeley (UCB model). Results indicated that DPV performed generally better than the desk fan. It provided better thermal comfort and showed a superior performance in removing the exhaled contaminants. However, the desk fan performed better in removing the contaminants emitted from a passive source near the floor level. This indicates that the performance of DPV and desk fans depends highly on the location of the contamination source. Moreover, the simulations showed that both systems increased the spread of exhaled contamination when used by the source occupant. KW - Behaglichkeit KW - Raumklima KW - Strömungsmechanik KW - Fluid KW - computational fluid dynamics KW - desk fan KW - ductless personalized ventilation KW - IAQ KW - thermal comfort Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200422-41407 UR - https://onlinelibrary.wiley.com/doi/full/10.1111/ina.12672 VL - 2020 PB - John Wiley & Sons Ltd ER - TY - THES A1 - Schemmann, Christoph T1 - Optimierung von radialen Verdichterlaufrädern unter Berücksichtigung empirischer und analytischer Vorinformationen mittels eines mehrstufigen Sampling Verfahrens T1 - Optimization of Centrifugal Compressor Impellers by a Multi-fidelity Sampling Method Taking Analytical and Empirical Information into Account N2 - Turbomachinery plays an important role in many cases of energy generation or conversion. Therefore, turbomachinery is a promising approaching point for optimization in order to increase the efficiency of energy use. In recent years, the use of automated optimization strategies in combination with numerical simulation has become increasingly popular in many fields of engineering. The complex interactions between fluid and solid mechanics encountered in turbomachines on the one hand and the high computational expense needed to calculate the performance on the other hand, have, however, prevented a widespread use of these techniques in this field of engineering. The objective of this work was the development of a strategy for efficient metamodel based optimization of centrifugal compressor impellers. In this context, the main focus is the reduction of the required numerical expense. The central idea followed in this research was the incorporation of preliminary information acquired from low-fidelity computation methods and empirical correlations into the sampling process to identify promising regions of the parameter space. This information was then used to concentrate the numerically expensive high-fidelity computations of the fluid dynamic and structure mechanic performance of the impeller in these regions while still maintaining a good coverage of the whole parameter space. The development of the optimization strategy can be divided into three main tasks. Firstly, the available preliminary information had to be researched and rated. This research identified loss models based on one dimensional flow physics and empirical correlations as the best suited method to predict the aerodynamic performance. The loss models were calibrated using available performance data to obtain a high prediction quality. As no sufficiently exact models for the prediction of the mechanical loading of the impellercould be identified, a metamodel based on finite element computations was chosen for this estimation. The second task was the development of a sampling method which concentrates samples in regions of the parameter space where high quality designs are predicted by the preliminary information while maintaining a good overall coverage. As available methods like rejection sampling or Markov-chain Monte-Carlo methods did not meet the requirements in terms of sample distribution and input correlation, a new multi-fidelity sampling method called “Filtered Sampling“has been developed. The last task was the development of an automated computational workflow. This workflow encompasses geometry parametrization, geometry generation, grid generation and computation of the aerodynamic performance and the structure mechanic loading. Special emphasis was put into the development of a geometry parametrization strategy based on fluid mechanic considerations to prevent the generation of physically inexpedient designs. Finally, the optimization strategy, which utilizes the previously developed tools, was successfully employed to carry out three optimization tasks. The efficiency of the method was proven by the first and second testcase where an existing compressor design was optimized by the presented method. The results were comparable to optimizations which did not take preliminary information into account, while the required computational expense cloud be halved. In the third testcase, the method was applied to generate a new impeller design. In contrast to the previous examples, this optimization featuredlargervariationsoftheimpellerdesigns. Therefore, theapplicability of the method to parameter spaces with significantly varying designs could be proven, too. N2 - Turbomaschinen sind eine entscheidende Komponente in vielen Energiewandlungs- oder Energieerzeugungsprozessen und daher als vielversprechender Ansatzpunkt für eine Effizienzsteigerung der Energie-und Ressourcennutzung anzusehen. Im Laufe des letzten Jahrzehnts haben automatisierte Optimierungsmethoden in Verbindung mit numerischer Simulation zunehmend breitere Verwendung als Mittel zur Effizienzsteigerung in vielen Bereichen der Ingenieurwissenschaften gefunden. Allerdings standen die komplexen Interaktionen zwischen Strömungs- und Strukturmechanik sowie der hohe nummerische Aufwand einem weitverbreiteten Einsatz dieser Methoden im Turbomaschinenbereich bisher entgegen. Das Ziel dieser Forschungsaktivität ist die Entwicklung einer effizienten Strategie zur metamodellbasierten Optimierung von radialen Verdichterlaufrädern. Dabei liegt der Schwerpunkt auf einer Reduktion des benötigten numerischen Aufwandes. Der in diesem Vorhaben gewählte Ansatz ist das Einbeziehen analytischer und empirischer Vorinformationen (“lowfidelity“) in den Sampling Prozess, um vielversprechende Bereiche des Parameterraumes zu identifizieren. Diese Informationen werden genutzt um die aufwendigen numerischen Berechnungen (“high-fidelity“) des strömungs- und strukturmechanischen Verhaltens der Laufräder in diesen Bereichen zu konzentrieren, während gleichzeitig eine ausreichende Abdeckung des gesamten Parameterraumes sichergestellt wird. Die Entwicklung der Optimierungsstrategie ist in drei zentrale Arbeitspakete aufgeteilt. In einem ersten Schritt werden die verfügbaren empirischen und analytischen Methoden gesichtet und bewertet. In dieser Recherche sind Verlustmodelle basierend auf eindimensionaler Strömungsmechanik und empirischen Korrelationen als bestgeeignete Methode zur Vorhersage des aerodynamischen Verhaltens der Verdichter identifiziert worden. Um eine hohe Vorhersagegüte sicherzustellen, sind diese Modelle anhand verfügbarer Leistungsdaten kalibriert worden. Da zur Vorhersage der mechanischen Belastung des Laufrades keine brauchbaren analytischen oder empirischen Modelle ermittelt werden konnten, ist hier ein Metamodel basierend auf Finite-Element Berechnungen gewählt worden. Das zweite Arbeitspaket beinhaltet die Entwicklung der angepassten Samplingmethode, welche Samples in Bereichen des Parameterraumes konzentriert, die auf Basis der Vorinformationen als vielversrechend angesehen werden können. Gleichzeitig müssen eine gleichmäßige Abdeckung des gesamten Parameterraumes und ein niedriges Niveau an Eingangskorrelationen sichergestellt sein. Da etablierte Methoden wie Markov-Ketten-Monte-Carlo-Methoden oder die Verwerfungsmethode diese Voraussetzungen nicht erfüllen, ist ein neues, mehrstufiges Samplingverfahren (“Filtered Sampling“) entwickelt worden. Das letzte Arbeitspaket umfasst die Entwicklung eines automatisiertenSimulations-Workflows. Dieser Workflow umfasst Geometrieparametrisierung, Geometrieerzeugung, Netzerzeugung sowie die Berechnung des aerodynamischen Betriebsverhaltens und der strukturmechanischen Belastung. Dabei liegt ein Schwerpunkt auf der Entwicklung eines Parametrisierungskonzeptes, welches auf strömungsmechanischen Zusammenhängen beruht, um so physikalisch nicht zielführende Parameterkombinationen zu vermeiden. Abschließend ist die auf den zuvor entwickelten Werkzeugen aufbauende Optimierungsstrategie erfolgreich eingesetzt worden, um drei Optimierungsfragestellungen zu bearbeiten. Im ersten und zweiten Testcase sind bestehende Verdichterlaufräder mit der vorgestellten Methode optimiert worden. Die erzielten Optimierungsergebnisse sind von ähnlicher Güte wie die solcher Optimierungen, die keine Vorinformationen berücksichtigen, allerdingswirdnurdieHälfteannumerischemAufwandbenötigt. IneinemdrittenTestcase ist die Methode eingesetzt worden, um ein neues Laufraddesign zu erzeugen. Im Gegensatz zu den vorherigen Beispielen werden im Rahmen dieser Optimierung stark unterschiedliche Designs untersucht. Dadurch kann an diesem dritten Beispiel aufgezeigt werden, dass die Methode auch für Parameterräume mit stakt variierenden Designs funktioniert. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2019,3 KW - Simulation KW - Maschinenbau KW - Optimierung KW - Strömungsmechanik KW - Strukturmechanik Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190910-39748 ER - TY - JOUR A1 - Alsaad, Hayder A1 - Völker, Conrad T1 - Performance assessment of a ductless personalized ventilation system using a validated CFD model JF - Journal of Building Performance Simulation N2 - The aim of this study is twofold: to validate a computational fluid dynamics (CFD) model, and then to use the validated model to evaluate the performance of a ductless personalized ventilation (DPV) system. To validate the numerical model, a series of measurements was conducted in a climate chamber equipped with a thermal manikin. Various turbulence models, settings, and options were tested; simulation results were compared to the measured data to determine the turbulence model and solver settings that achieve the best agreement between the measured and simulated values. Subsequently, the validated CFD model was then used to evaluate the thermal environment and indoor air quality in a room equipped with a DPV system combined with displacement ventilation. Results from the numerical model were then used to quantify thermal sensation and comfort using the UC Berkeley thermal comfort model. KW - Ventilation KW - Validierung KW - Strömungsmechanik KW - Raumklima KW - personalized ventilation KW - validation KW - computational fluid dynamics KW - thermal comfort KW - indoor air quality Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190218-38500 UR - https://www.tandfonline.com/doi/full/10.1080/19401493.2018.1431806 N1 - Copyright 2018 Taylor & Francis Group and the International Building Performance Simulation Association (IBPSA). This article may be downloaded for personal use only. Any other use requires prior permission of the authors and Taylor & Francis Group. This is an Accepted Manuscript of an article published by Taylor & Francis in the Journal of Building Performance Simulation 11 (6), 689–704 (2018) and may be found at https://doi.org/10.1080/19401493.2018.1431806 VL - 2018 IS - 11, Heft 6 SP - 689 EP - 704 ER - TY - JOUR A1 - Völker, Conrad A1 - Mämpel, Silvio A1 - Kornadt, Oliver T1 - Measuring the human body’s micro‐climate using a thermal manikin JF - Indoor Air N2 - The human body is surrounded by a micro‐climate which results from its convective release of heat. In this study, the air temperature and flow velocity of this micro‐climate were measured in a climate chamber at various room temperatures, using a thermal manikin simulating the heat release of the human being. Different techniques (Particle Streak Tracking, thermography, anemometry, and thermistors) were used for measurement and visualization. The manikin surface temperature was adjusted to the particular indoor climate based on simulations with a thermoregulation model (UCBerkeley Thermal Comfort Model). We found that generally, the micro‐climate is thinner at the lower part of the torso, but expands going up. At the head, there is a relatively thick thermal layer, which results in an ascending plume above the head. However, the micro‐climate shape strongly depends not only on the body segment, but also on boundary conditions: the higher the temperature difference between the surface temperature of the manikin and the air temperature, the faster the air flow in the micro‐climate. Finally, convective heat transfer coefficients strongly increase with falling room temperature, while radiative heat transfer coefficients decrease. The type of body segment strongly influences the convective heat transfer coefficient, while only minimally influencing the radiative heat transfer coefficient. KW - Raumklima KW - Mikroklima KW - Wärmeübertragung KW - Strömungsmechanik KW - thermal manikin KW - climate chamber KW - micro climate KW - heat transfer coefficient KW - CFD KW - thermography Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20181025-38153 UR - https://onlinelibrary.wiley.com/doi/abs/10.1111/ina.12112 N1 - This is the peer reviewed version of the following article: "Measuring the human body’s micro‐climate using a thermal manikin", which has been published in final form at https://doi.org/10.1111/ina.12112. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. IS - 24, 6 SP - 567 EP - 579 ER - TY - CHAP A1 - Pastohr, Henry A1 - Kornadt, Oliver A1 - Gürlebeck, Klaus T1 - Numerische Untersuchungen zum Thermischen Strömungsverhalten im Aufwindkraftwerk T1 - Numerische und analytische Untersuchungen zum Strömungsverhalten im Aufwindkraftwerk N2 - Das Aufwindkraftwerk ist eine thermo- hydrodynamische Maschine zur Elektroenergiegewinnung, bestehend aus einem Treibhaus, einem Kamin und einer oder mehreren Turbinen. In dieser Studie wurden numerische Ergebnisse zum thermischen Strömungsverhalten in einem Aufwindkraftwerk unter der Berücksichtigung der Teilmodelle Erdboden, Kollektor, Atmosphäre, Umlenkung, Kamin und Turbine erhaltenden. Hierzu wurden die stationären Grundgleichungen der Thermofluiddynamik auf strukturierten, körperangepassten und rotationssymmetrischen Gittern unter Beachtung aller Rand- und Kopplungsbedingungen numerisch mit dem finite Volumenverfahren gelöst. Besonderes Augenmerk wurde dabei auf die Kalibrierung des Modells im Ruhezustand, auf die numerische Simulation, auf den Einfluss der Strahlung, auf die Betrachtung der Turbine, auf das Dichtemodell sowie auf den turbulenten Strömungszustand gelegt. Die erhaltenen Ergebnisse werden durch Approximationen 2. Ordnung, Gitterunabhängigkeit und durch einen sehr geringen Abbruchfehler charakterisiert. Für 4 verschiedene Einstrahlungen wurden die Verläufe von Temperatur und Geschwindigkeit im Aufwindkraftwerk erhalten. Zusätzlich sind für Vergleichszwecke der Massenstrom, der Temperaturhub, die Leistung an der Turbine und der Wirkungsgrad der Anlage bestimmt wurden. Aufbauend auf den Berechnungen in dieser Arbeit und den numerischen und analytischen Berechnungen in [1] können nun erweiterte Parameterstudien und instationäre Simulationen zum Aufwindkraftwerk durchgeführt werden. KW - Aufwindkraftwerk KW - Strömungsmechanik Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-3436 ER -