TY - JOUR A1 - Alsaad, Hayder A1 - Völker, Conrad T1 - Performance assessment of a ductless personalized ventilation system using a validated CFD model JF - Journal of Building Performance Simulation N2 - The aim of this study is twofold: to validate a computational fluid dynamics (CFD) model, and then to use the validated model to evaluate the performance of a ductless personalized ventilation (DPV) system. To validate the numerical model, a series of measurements was conducted in a climate chamber equipped with a thermal manikin. Various turbulence models, settings, and options were tested; simulation results were compared to the measured data to determine the turbulence model and solver settings that achieve the best agreement between the measured and simulated values. Subsequently, the validated CFD model was then used to evaluate the thermal environment and indoor air quality in a room equipped with a DPV system combined with displacement ventilation. Results from the numerical model were then used to quantify thermal sensation and comfort using the UC Berkeley thermal comfort model. KW - Ventilation KW - Validierung KW - Strömungsmechanik KW - Raumklima KW - personalized ventilation KW - validation KW - computational fluid dynamics KW - thermal comfort KW - indoor air quality Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190218-38500 UR - https://www.tandfonline.com/doi/full/10.1080/19401493.2018.1431806 N1 - Copyright 2018 Taylor & Francis Group and the International Building Performance Simulation Association (IBPSA). This article may be downloaded for personal use only. Any other use requires prior permission of the authors and Taylor & Francis Group. This is an Accepted Manuscript of an article published by Taylor & Francis in the Journal of Building Performance Simulation 11 (6), 689–704 (2018) and may be found at https://doi.org/10.1080/19401493.2018.1431806 VL - 2018 IS - 11, Heft 6 SP - 689 EP - 704 ER -