TY - JOUR A1 - Grundhöfer, Anselm A1 - Seeger, Manja A1 - Häntsch, Ferry A1 - Bimber, Oliver T1 - Coded Projection and Illumination for Television Studios N2 - We propose the application of temporally and spatially coded projection and illumination in modern television studios. In our vision, this supports ad-hoc re-illumination, automatic keying, unconstrained presentation of moderation information, camera-tracking, and scene acquisition. In this paper we show how a new adaptive imperceptible pattern projection that considers parameters of human visual perception, linked with real-time difference keying enables an in-shot optical tracking using a novel dynamic multi-resolution marker technique KW - Association for Computing Machinery / Special Interest Group on Graphics KW - CGI KW - Maschinelles Sehen KW - Virtuelle Studios KW - Erweiterte Realität KW - Kamera Tracking KW - Projektion KW - Virtual Studios KW - Augmented Reality KW - Camera Tracking KW - Projection Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-8005 ER - TY - RPRT A1 - Grundhöfer, Anselm A1 - Seeger, Manja A1 - Häntsch, Ferry A1 - Bimber, Oliver T1 - Dynamic Adaptation of Projected Imperceptible Codes N2 - In this paper we present a novel adaptive imperceptible pattern projection technique that considers parameters of human visual perception. A coded image that is invisible for human observers is temporally integrated into the projected image, but can be reconstructed by a synchronized camera. The embedded code is dynamically adjusted on the fly to guarantee its non-perceivability and to adapt it to the current camera pose. Linked with real-time flash keying, for instance, this enables in-shot optical tracking using a dynamic multi-resolution marker technique. A sample prototype is realized that demonstrates the application of our method in the context of augmentations in television studios. KW - Association for Computing Machinery / Special Interest Group on Graphics KW - CGI KW - Maschinelles Sehen KW - Erweiterte Realität KW - Kamera Tracking KW - Projektion KW - Augmented Reality KW - Camera Tracking KW - Projection Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-8168 ER - TY - RPRT A1 - Grundhöfer, Anselm A1 - Bimber, Oliver T1 - Dynamic Bluescreens N2 - Blue screens and chroma keying technology are essential for digital video composition. Professional studios apply tracking technology to record the camera path for perspective augmentations of the original video footage. Although this technology is well established, it does not offer a great deal of flexibility. For shootings at non-studio sets, physical blue screens might have to be installed, or parts have to be recorded in a studio separately. We present a simple and flexible way of projecting corrected keying colors onto arbitrary diffuse surfaces using synchronized projectors and radiometric compensation. Thereby, the reflectance of the underlying real surface is neutralized. A temporal multiplexing between projection and flash illumination allows capturing the fully lit scene, while still being able to key the foreground objects. In addition, we embed spatial codes into the projected key image to enable the tracking of the camera. Furthermore, the reconstruction of the scene geometry is implicitly supported. KW - Association for Computing Machinery / Special Interest Group on Graphics KW - CGI KW - Maschinelles Sehen KW - Farbstanzen KW - Erweiterte Realität KW - Projektion KW - Chroma Keying KW - Bildmischung KW - Augmented Reality KW - Projection KW - Chromakeying KW - Compositing Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20080226-13016 ER - TY - INPR A1 - Grundhöfer, Anselm A1 - Bimber, Oliver T1 - Real-Time Adaptive Radiometric Compensation N2 - Recent radiometric compensation techniques make it possible to project images onto colored and textured surfaces. This is realized with projector-camera systems by scanning the projection surface on a per-pixel basis. With the captured information, a compensation image is calculated that neutralizes geometric distortions and color blending caused by the underlying surface. As a result, the brightness and the contrast of the input image is reduced compared to a conventional projection onto a white canvas. If the input image is not manipulated in its intensities, the compensation image can contain values that are outside the dynamic range of the projector. They will lead to clipping errors and to visible artifacts on the surface. In this article, we present a novel algorithm that dynamically adjusts the content of the input images before radiometric compensation is carried out. This reduces the perceived visual artifacts while simultaneously preserving a maximum of luminance and contrast. The algorithm is implemented entirely on the GPU and is the first of its kind to run in real-time. KW - Maschinelles Sehen KW - CGI KW - Bildbasiertes Rendering KW - Display KW - Projektionsverfahren KW - Radiometrische Kompensation KW - Projektion KW - Projekor-Kamera System KW - Bildkorrektur KW - Visuelle Wahrnehmung KW - radiometric compensation KW - projection KW - projector-camera systems KW - image correction KW - visual perception Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-7848 ER -