TY - JOUR A1 - Bucher, Christian A1 - Most, Thomas T1 - A comparison of approximate response functions in structural reliability analysis JF - Probabilistic Engineering Mechanics N2 - A comparison of approximate response functions in structural reliability analysis KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2008 SP - 154 EP - 163 ER - TY - JOUR A1 - Kirichuk, A. A1 - Most, Thomas A1 - Bucher, Christian T1 - Numerical nonlinear analysis of kinematically excited shells JF - International Journal for Computational Civil and Structural Engineering N2 - Numerical nonlinear analysis of kinematically excited shells KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2003 SP - 61 EP - 74 ER - TY - JOUR A1 - Most, Thomas T1 - A natural neighbour-based moving least-squares approach for the element-free Galerkin method JF - International Journal for Numerical Methods in Engineering N2 - A natural neighbour-based moving least-squares approach for the element-free Galerkin method KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2007 SP - 224 EP - 252 ER - TY - CHAP A1 - Most, Thomas ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - ESTIMATING UNCERTAINTIES FROM INACCURATE MEASUREMENT DATA USING MAXIMUM ENTROPY DISTRIBUTIONS N2 - Modern engineering design often considers uncertainties in geometrical and material parameters and in the loading conditions. Based on initial assumptions on the stochastic properties as mean values, standard deviations and the distribution functions of these uncertain parameters a probabilistic analysis is carried out. In many application fields probabilities of the exceedance of failure criteria are computed. The out-coming failure probability is strongly dependent on the initial assumptions on the random variable properties. Measurements are always more or less inaccurate data due to varying environmental conditions during the measurement procedure. Furthermore the estimation of stochastic properties from a limited number of realisation also causes uncertainties in these quantities. Thus the assumption of exactly known stochastic properties by neglecting these uncertainties may not lead to very useful probabilistic measures in a design process. In this paper we assume the stochastic properties of a random variable as uncertain quantities caused by so-called epistemic uncertainties. Instead of predefined distribution types we use the maximum entropy distribution which enables the description of a wide range of distribution functions based on the first four stochastic moments. These moments are taken again as random variables to model the epistemic scatter in the stochastic assumptions. The main point of this paper is the discussion on the estimation of these uncertain stochastic properties based on inaccurate measurements. We investigate the bootstrap algorithm for its applicability to quantify the uncertainties in the stochastic properties considering imprecise measurement data. Based on the obtained estimates we apply standard stochastic analysis on a simple example to demonstrate the difference and the necessity of the proposed approach. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28732 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - JOUR A1 - Most, Thomas A1 - Bucher, Christian T1 - Energy-based simulation of concrete cracking using an improved mixed-mode cohesive crack model within a meshless discretization JF - International Journal for Numerical and Analytical Methods in Geomechanics N2 - Energy-based simulation of concrete cracking using an improved mixed-mode cohesive crack model within a meshless discretization KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2007 SP - 285 EP - 305 ER - TY - JOUR A1 - Most, Thomas A1 - Bucher, Christian T1 - New concepts for moving least squares: An interpolating non-singular weighting function and weighted nodal least squares JF - Engineering Analysis with Boundary Elements N2 - New concepts for moving least squares: An interpolating non-singular weighting function and weighted nodal least squares KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2008 SP - 461 EP - 470 ER - TY - JOUR A1 - Most, Thomas A1 - Bucher, Christian T1 - Probabilistic analysis of concrete cracking using neural networks and random fields JF - Probabilistic Engineering Mechanics N2 - Probabilistic analysis of concrete cracking using neural networks and random fields KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2007 SP - 219 EP - 229 ER - TY - JOUR A1 - Most, Thomas A1 - Bucher, Christian T1 - Stochastic simulation of cracking in concrete structures using multi-parameter random fields JF - International Journal of Reliability and Safety N2 - Stochastic simulation of cracking in concrete structures using multi-parameter random fields KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2006 SP - 168 EP - 187 ER - TY - JOUR A1 - Most, Thomas A1 - Bucher, Christian T1 - A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions JF - Structural Engineering and Mechanics N2 - A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2005 SP - 315 EP - 332 ER - TY - JOUR A1 - Most, Thomas A1 - Bucher, Christian A1 - Schorling, York T1 - Dynamic stability analysis of non-linear structures with geometrical imperfections under random loading JF - Journal of Sound and Vibration N2 - Dynamic stability analysis of non-linear structures with geometrical imperfections under random loading KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2004 SP - 381 EP - 400 ER -