TY - JOUR A1 - Ataollahi Oshkour, Azim A1 - Talebi, Hossein A1 - Seyed Shirazi, Seyed Farid A1 - Bayat, Mehdi A1 - Yau, Yat Huang A1 - Tarlochan, Faris A1 - Abu Osman, Noor Azuan T1 - Comparison of various functionally graded femoral prostheses by finite element analysis JF - Scientific World Journal N2 - This study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip replacement was implanted. The considered prosthesis is fabricated from a functionally graded material (FGM) comprising a layer of a titanium alloy bonded to a layer of hydroxyapatite. The elastic modulus of the FGM was adjusted in the radial, longitudinal, and longitudinal-radial directions by altering the volume fraction gradient exponent. Four cases were studied, involving two different methods of anchoring the prosthesis to the spongy bone and two cases of applied loading. The results revealed that the FG prostheses provoked more SED to the bone. The FG prostheses carried less stress, while more stress was induced to the bone and cement. Meanwhile, less shear interface stress was stimulated to the prosthesis-bone interface in the noncemented FG prostheses. The cement-bone interface carried more stress compared to the prosthesis-cement interface. Stair climbing induced more harmful effects to the implanted femur components compared to the normal walking by causing more stress. Therefore, stress shielding, developed stresses, and interface stresses in the THR components could be adjusted through the controlling stiffness of the FG prosthesis by managing volume fraction gradient exponent. KW - Finite-Elemente-Methode KW - Hüftgelenk KW - Funktioneller Gradientenwerkstoff Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170413-31194 ER - TY - JOUR A1 - Banihani, Suleiman A1 - Rabczuk, Timon A1 - Almomani, Thakir T1 - POD for real-time simulation of hyperelastic soft biological tissue using the point collocation method of finite spheres JF - Mathematical Problems in Engineering N2 - The point collocation method of finite spheres (PCMFS) is used to model the hyperelastic response of soft biological tissue in real time within the framework of virtual surgery simulation. The proper orthogonal decomposition (POD) model order reduction (MOR) technique was used to achieve reduced-order model of the problem, minimizing computational cost. The PCMFS is a physics-based meshfree numerical technique for real-time simulation of surgical procedures where the approximation functions are applied directly on the strong form of the boundary value problem without the need for integration, increasing computational efficiency. Since computational speed has a significant role in simulation of surgical procedures, the proposed technique was able to model realistic nonlinear behavior of organs in real time. Numerical results are shown to demonstrate the effectiveness of the new methodology through a comparison between full and reduced analyses for several nonlinear problems. It is shown that the proposed technique was able to achieve good agreement with the full model; moreover, the computational and data storage costs were significantly reduced. KW - Chirurgie KW - Finite-Elemente-Methode Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170413-31203 ER - TY - JOUR A1 - Galffy, Mozes A1 - Wellmann Jelic, Andres A1 - Hartmann, Dietrich T1 - Lifetime-oriented modelling of vortex-induced across-wind vibrations on bridge tie rods N2 - The influence of vortex-induces vibrations on vertical tie rods has been proved as a determinant load factor in the lifetime-oriented dimensioning of arched steel bridges. Particularly, the welded connection plates between the suspenders and the arches often exhibit cracks induced primarily rods. In this context, the synchronization of the vortex-shedding to the rod motion in a critical wind velocity range, the so-called lock-in effect, is of essential interest. KW - Finite-Elemente-Methode KW - Physikalisches Verfahren KW - Brückenbau KW - Schwingung Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2536 ER - TY - JOUR A1 - Ganev, T. A1 - Marinov, M. T1 - Towards Optimal Designing of thin elastic Plates with a specific free Oscillations Frequency N2 - Thin elastic plates are the basic constructional elements and are very often subjected to dynamic effects especially in the machine-building structures. Their saving design of resonance conditions of operation is an extremely complicated task which cannot be solved analytically. In the present report an efficient and sufficiently general method for optimal design of thin plates is worked out on the basis of energy resonance method of Wilder, the method of the finite elements for dynamic research and the methods of parameter optimization. By means of these methods various limitations and requirements put by the designer to the plates can be taken into account. A programme module for numerical investigation of the weight variation of the plate depending on the taken variable of the designed thickness at different supporting conditions is developed. The reasons for the considerable quantity and quality difference between the obtained optimal designs are also analysed. KW - Platte KW - Optimierung KW - Freie Schwingung KW - Finite-Elemente-Methode Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-5375 ER - TY - JOUR A1 - Ibanez, Stalin A1 - Kraus, Matthias T1 - A Numerical Approach for Plastic Cross Cross-Sectional Analyses of Steel Members JF - ce/papers N2 - Global structural analyses in civil engineering are usually performed considering linear-elastic material behavior. However, for steel structures, a certain degree of plasticization depending on the member classification may be considered. Corresponding plastic analyses taking material nonlinearities into account are effectively realized using numerical methods. Frequently applied finite elements of two and three-dimensional models evaluate the plasticity at defined nodes using a yield surface, i.e. by a yield condition, hardening rule, and flow rule. Corresponding calculations are connected to a large numerical as well as time-consuming effort and they do not rely on the theoretical background of beam theory, to which the regulations of standards mainly correspond. For that reason, methods using beam elements (one-dimensional) combined with cross-sectional analyses are commonly applied for steel members in terms of plastic zones theories. In these approaches, plasticization is in general assessed by means of axial stress only. In this paper, more precise numerical representation of the combined stress states, i.e. axial and shear stresses, is presented and results of the proposed approach are validated and discussed. KW - Stahlkonstruktion KW - Plastizität KW - Strukturanalyse KW - Stahlbauteil KW - Axialspannung KW - Finite-Elemente-Methode Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220112-45622 UR - https://onlinelibrary.wiley.com/doi/full/10.1002/cepa.1527 VL - 2021 IS - Volume 4, issue 2-4 SP - 2098 EP - 2106 PB - Ernst & Sohn, a Wiley brand CY - Berlin ER - TY - JOUR A1 - Kaapke, Kai A1 - Milbradt, Peter T1 - Voronoi-based finite volume method for transport problems N2 - Transport problems, as, for instance, the transport of sediment in hydraulic engineering and the transport of harmful substances through porous media, play an important role in many fields of civil engineering. Other examples include the dissipation of heat or sound as well as the simulation of traffic with macroscopic models. The contribution explains the analysis of the applicability of Voronoi-based finite volume methods for the approximation of solutions of transport problems. A special concern is the discretisation of the transport equation. Current limitations of the method as well as ideas for stabilisation are explained with examples. KW - Finite-Elemente-Methode KW - Physikalisches Verfahren KW - Transport Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2558 ER - TY - JOUR A1 - Kaklauskas, Gintaris A1 - Cervenka, Vladimir A1 - Cervenka, Jan T1 - Deflection Calculation of RC Beams: Finite Element Software versus Design Code Methods N2 - The paper investigates accuracy of deflection predictions made by the finite element package ATENA and design code methods ACI and EC2. Deflections have been calculated for a large number of experimental reinforced concrete beams reported by three investigators. Statistical parameters have been established for each of the technique at different load levels, separately for the beams with small and moderate reinforcement ratio. KW - Finite-Elemente-Methode KW - Physikalisches Verfahren KW - Balken Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2498 ER - TY - JOUR A1 - Kashiyama, Kazuo A1 - Hamada, Hidetaka A1 - Taniguchi, Takeo T1 - Large Scale Finite Element Simulation and Modeling Using GIS/CAD for Environmental Flows in Urban Area N2 - A large-scale computer modeling and simulation method is presented for environmental flows in urban area. Several GIS and CAD data were used for the preparation of shape model and an automatic mesh generation method based on Delaunay method was developed. Parallel finite element method based on domain decomposition method was employed for the numerical simulation of natural phenomena. The present method was applied to the simulation of flood flow and wind flow in urban area. The present method is shown to be a useful planning and design tool for the natural disasters and the change of environments. KW - Geoinformationssystem KW - Finite-Elemente-Methode KW - Stadtplanung Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2675 ER - TY - JOUR A1 - Ke, Chen A1 - Jian Ming, Lu T1 - Study of Analysis System for Bridge Test N2 - Analysis System for Bridge Test (Chinese name abbr.: QLJC) is an application software specially designed for bridge test to analyze the static and dynamic character of bridge structures, calculate efficiency ratio of load test, pick up the results of observation points and so on. In this paper, research content, system design, calculation theory, characteristics and practical application of QLJC is introduced in detail. KW - Finite-Elemente-Methode KW - Physikalisches Verfahren KW - Brückenbau KW - Straßenbrücke Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2547 ER - TY - JOUR A1 - Kraus, Matthias A1 - Crişan, Nicolae-Andrei A1 - Wittor, Björn T1 - Stability Study of Cantilever-Beams – Numerical Analysis and Analytical Calculation (LTB) JF - ce/papers N2 - According to Eurocode, the computation of bending strength for steel cantilever beams is a straightforward process. The approach is based on an Ayrton-Perry formula adaptation of buckling curves for steel members in compression, which involves the computation of an elastic critical buckling load for considering the instability. NCCI documents offer a simplified formula to determine the critical bending moment for cantilevers beams with symmetric cross-section. Besides the NCCI recommendations, other approaches, e.g. research literature or Finite-Element-Analysis, may be employed to determine critical buckling loads. However, in certain cases they render different results. Present paper summarizes and compares the abovementioned analytical and numerical approaches for determining critical loads and it exemplarily analyses corresponding cantilever beam capacities using numerical approaches based on plastic zones theory (GMNIA). KW - Träger KW - Stahl KW - Biegefestigkeit KW - Finite-Elemente-Methode KW - Stahlträger KW - Knicklast KW - Freiträgerkapazität KW - Eurocode Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220112-45637 UR - https://onlinelibrary.wiley.com/doi/full/10.1002/cepa.1539 VL - 2021 IS - Volume 4, issue 2-4 SP - 2199 EP - 2206 PB - Ernst & Sohn, a Wiley brand CY - Berlin ER -