TY - JOUR A1 - Aziz, Zeeshan A1 - Anumba, Chimay A1 - Miles, John T1 - Towards a Semantic Grid Computing Platform for Disaster Management in Built Environment N2 - Current disaster management procedures rely primarily on heuristics which result in their strategies being very cautious and sub-optimum in terms of saving life, minimising damage and returning the building to its normal function. Also effective disaster management demands decentralized, dynamic, flexible, short term and across domain resource sharing, which is not well supported by existing distributing computing infrastructres. The paper proposes a conceptual framework for emergency management in the built environment, using Semantic Grid as an integrating platform for different technologies. The framework supports a distributed network of specialists in built environment, including structural engineers, building technologists, decision analysts etc. It brings together the necessary technology threads, including the Semantic Web (to provide a framework for shared definitions of terms, resources and relationships), Web Services (to provide dynamic discovery and integration) and Grid Computing (for enhanced computational power, high speed access, collaboration and security control) to support rapid formation of virtual teams for disaster management. The proposed framework also make an extensive use of modelling and simulation (both numerical and using visualisations), data mining (to find resources in legacy data sets) and visualisation. It also include a variety of hardware instruments with access to real time data. Furthermore the whole framework is centred on collaborative working by the virtual team. Although focus of this paper is on disaster management, many aspects of the discussed Grid and Visualisation technologies will be useful for any other forms of collaboration. Conclusions are drawn about the possible future impact on the built environment. KW - Mehragentensystem KW - Lernendes System KW - Katastrophenmanagement KW - Software Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2084 ER - TY - CHAP A1 - Alda, Sascha A1 - Cremers, Armin B. A1 - Bilek, Jochen T1 - Support of Collaborative Structural Design Processes through the Integration of Peer-to-Peer and Multiagent Architectures N2 - Structural engineering projects are increasingly organized in networked cooperations due to a permanently enlarged competition pressure and a high degree of complexity while performing the concurrent design activities. Software that intends to support such collaborative structural design processes implicates enormous requirements. In the course of our common research work, we analyzed the pros and cons of the application of both the peer-to-peer (University of Bonn) and multiagent architecture style (University of Bochum) within the field of collaborative structural design. In this paper, we join the benefits of both architecture styles in an integrated conceptual approach. We demonstrate the surplus value of the integrated multiagent–peer-to-peer approach by means of an example scenario in which several structural engineers are co-operatively designing the basic structural elements of an arched bridge, applying heterogeneous CAD systems. KW - Ingenieurbau KW - Verteiltes System KW - Planungsprozess KW - Modellierung KW - Mehragentensystem Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1481 ER - TY - JOUR A1 - Likhitruangsilp, Veerasak A1 - Ioannou, Photios T1 - Risk-sensitive Markov Decision Process for Underground Construction Planning and Estimating N2 - This paper presents an application of dynamic decision making under uncertainty in planning and estimating underground construction. The application of the proposed methodology is illustrated by its application to an actual tunneling project—The Hanging Lake Tunnel Project in Colorado, USA. To encompass the typical risks in underground construction, tunneling decisions are structured as a risk-sensitive Markov decision process that reflects the decision process faced by a contractor in each tunneling round. This decision process consists of five basic components: (1) decision stages (locations), (2) system states (ground classes and tunneling methods), (3) alternatives (tunneling methods), (4) ground class transition probabilities, and (5) tunneling cost structure. The paper also presents concepts related to risk preference that are necessary to model the contractor’s risk attitude, including the lottery concept, utility theory, and the delta property. The optimality equation is formulated, the model components are defined, and the model is solved by stochastic dynamic programming. The main results are the optimal construction plans and risk-adjusted project costs, both of which reflect the dynamics of subsurface construction, the uncertainty about geologic variability as a function of available information, and the contractor’s risk preference. KW - Mehragentensystem KW - Lernendes System KW - Tunnel KW - Markowschke KW - Kette Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2247 ER - TY - JOUR A1 - Takagi, Kousuke A1 - Tani, Akinori A1 - Kawamura, Hiroshi T1 - Research on Intelligent Fuzzy Optimal Active and Hybrid Control Systems of Building Structures - Verification of Optimization Method on Switching Rules of Control Forces N2 - Recently, many reseraches on active control systems of building structures are preformed based on modern control theory and are installed real buildings. The authors have already proposed intelligent fuzzy optimal active control (IFOAC) systems. IFOAC systems imitate intelligent activities of human brains such as prediction, adaptation, decision-kaking and so on. In IFOAC systems, objective and subjective judgements on the active control can be taken into account. However, IFOAC systems are considered to be suitable for far-field erathquake and control effect becomes small in case of near-field earthqaukes which include a few velosity pules with large amplitudes. To improve control effect in case of near-souece earthquakes, the authors have also proposed hybrid control (HC) systems, in which IFOAC systems and fuzzy control system are combined. In HC systems, the fuzzy control systems are introduced as a reflective fuzzy active control (RFAC) system and imitates spinal reflection of human. In HC systems, active control forces are activated to buildings in accordance with switching rules on active control forces. In this paper, optimizations on fuzzy control rules in RFAC system and switching rules of active control forces in HC system are performed by Parameter-Free Genetic Algorithms (PfGAs). Here, the optimization is performed by using different earthquake inputs. The results of digital simulations show that the HC system can reduce maximal response displacements under restrictions on strokes of the actuator effectively in case of a near-source earthquake and the effectiveness of the proposed HC system is discussed and clarified. KW - Mehragentensystem KW - Lernendes System KW - Fuzzy-Logik KW - Optimierung Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2238 ER - TY - CHAP A1 - Yamabe, Yuichiro A1 - Kawamura, Hiroshi A1 - Tani, Akinori T1 - Optimal Design for Recurrent Architecture Network Harmonized with Circulation-type Societies by Applying Genetic Algorithms to Multiagent Model N2 - In this paper, a circulation-type society is expressed by recurrent architecture network described with multi-agent model which consists of the following agents: user, builder, reuse maker, fabricator, waste disposer, material maker and earth bank (see Fig.1). Structural members, materials, resources and monies move among these agents. Each agent has its own rules and aims, regarding structural damages, lifetime, cost reduction, numbers of structural members and structural systems. Reasonable prices of members (fresh, reused, recycled and disposed) can be optimized by GAs in this system considering equal distribution of monies among agents. KW - Mehragentensystem KW - Lernendes System KW - Genetischer Algorithmus Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1892 ER - TY - CHAP A1 - Meißner, Udo F. A1 - Rueppel, Uwe A1 - Theiss, Mirko T1 - Network-Based Fire Engineering Supported by Agents N2 - Building design in Civil Engineering is characterized by the cooperation of experts in multiple disciplines. Close cooperation of engineers in different fields is the basis of high product quality, short development periods and a minimum of investment costs. For each building the engineers have to create a new fire engineering model. The consistent realization of the fire engineering model in all details has high demands on communication, collaboration and building models. Thereby, to preserve the related design models consistent to each other and compatible with the rules of fire engineering is a complex task. In addition, regulations and guidelines vary according to the building location, so the knowledge base must be integrated dynamically into the planning process. This contribution covers the integration of engineers and design models into a cooperation network on the basis of mobile agents. The distributed models of architectural design, structural planning and fire engineering are supported. These models are implemented as XML-based models which can be accessed by mobile agents for information retrieval and for processing tasks. Agents are provided to all planners, they are enabled to check up the distributed design models with the knowledge base of the fire protection regulations,. With the use of such an agent each planner is supported to check up his planning for accordance with the fire protection requirements. The fire-engineering-agent analyzes the design and detects inconsistencies by processing fire protection requirements and design model facts in a rule-based expert system. The possibility to check the planning information at an early state in the sense of compatibility to the fire protection regulations enables a comprehensive diagnosis of the design and the reduction of planning errors. KW - Ingenieurbau KW - Verteiltes System KW - Planungsprozess KW - Modellierung KW - Brandschutz KW - Mehragentensystem Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1447 ER - TY - JOUR A1 - Willenbacher, Heiko A1 - Hübler, Reinhard T1 - Intelligent Link-Management for the Support of Integration in Building Life Cycle N2 - The processes in the life cycle of buildings are characterised by highly distinct teamwork. The integration of all the distributed working participants, by providing an environment, which especially supports the communication and collaboration between the actors, is a fundamental step to improve the efficiency of the involved processes and to reduce the total costs. In this article, a link based modelling approach and its “intelligent” link management is introduced (1). This approach realises an integration environment based on a special building model that acts as a decision support system. The link-based modelling is characterised by the definition and specialisation of links between partial models. These intelligent managed links enable a very flexible and task specific data access and exchange between all the different views and partial models of the participants. KW - Mehragentensystem KW - Lernendes System KW - Bauwerk KW - Lebenszyklus Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2223 ER - TY - CHAP A1 - Hartmann, Dietrich A1 - Meißner, Udo F. A1 - Rueppel, Uwe T1 - Integration of Productmodel Databases into Multi-Agent Systems N2 - This paper deals with two different agent-based approaches aimed at the incorporation of complex design information into multi-agent planning systems. The first system facilitates collaborative structural design processes, the second one supports fire engineering in buildings. Both approaches are part of two different research projects that belong to the DFG1 priority program 1103 entitled “Network-based Co-operative Planning Processes in Structural Engineering“ (DFG 2000). The two approaches provide similar database wrapper agents to integrate relevant design information into two multi-agent systems: Database wrapper agents make the relevant product model data usable for further agents in the multi-agent system, independent on their physical location. Thus, database wrapper agents act as an interface between multi-agent system and heterogeneous database systems. The communication between the database wrapper agents and other requesting agents presumes a common vocabulary: a specific database ontology that maps database related message contents into database objects. Hereby, the software-wrapping technology enables the various design experts to plug in existing database systems and data resources into a specific multi-agent system easily. As a consequence, dynamic changes in the design information of large collaborative engineering projects are adequately supported. The flexible architecture of the database wrapper agent concept is demonstrated by the integration of an XML and a relational database system. KW - Ingenieurbau KW - Verteiltes System KW - Planungsprozess KW - Modellierung KW - Mehragentensystem Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1410 ER - TY - JOUR A1 - Geibig, Oliver A1 - Schnellenbach-Held, Martina T1 - Implementation of an Agent-based Bidding Consortium in the Architecture of an Agent-based Virtual Marketplace N2 - In this research project we intend to transfer the whole AEC-Bidding process to an agent-based virtual marketplace. Hereby, the existing legal regulations have to be considered. Important aspects in developing the virtual marketplace are to provide the possibility to realize an agentbased bidding consortium as well as to integrate subcontractors. KW - Mehragentensystem KW - Lernendes System KW - Ausschreibung KW - Internet Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2214 ER - TY - JOUR A1 - Abdalla, Jamal T1 - Elements of an Agent-based Mediative Communication Protocol for Design Objects N2 - Integrated structural engineering system usually consists of large number of design objects that may be distributed across different platforms. These design objects need to communicate data and information among each other. For efficient communication among design objects a common communication protocol need to be defined. This paper presents the elements of a communication protocol that uses a mediator agent to facilitate communication among design objects. This protocol is termed the Mediative Communication Protocol (MCP). The protocol uses certain design communication performatives and the semantics of an Agent Communication language (ACL) mainly the Knowledge and Query Manipulation Language (KQML) to implement its steps. Details of a Mediator Agent, that will facilitate the communication among design objects, is presented. The Unified Modeling Language (UML) is used to present the Meditative protocol and show how the mediator agent can be use to execute the steps of the meditative communication protocol. An example from structural engineering application is presented to demonstrate and validate the protocol. It is concluded that the meditative protocol is a viable protocol to facilitate object-to-object communication and also has potential to facilitate communication among the different project participants at the higher level of integrated structural engineering systems. KW - Mehragentensystem KW - Lernendes System KW - Kommunikationsprotokoll Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2207 ER -