TY - JOUR A1 - Müller, Matthias A1 - Ludwig, Horst-Michael A1 - Tange Hasholt, Marianne T1 - Salt frost attack on concrete: the combined effect of cryogenic suction and chloride binding on ice formation JF - Materials and Structures N2 - Scaling of concrete due to salt frost attack is an important durability issue in moderate and cold climates. The actual damage mechanism is still not completely understood. Two recent damage theories—the glue spall theory and the cryogenic suction theory—offer plausible, but conflicting explanations for the salt frost scaling mechanism. The present study deals with the cryogenic suction theory, which assumes that freezing concrete can take up unfrozen brine from a partly frozen deicing solution during salt frost attack. According to the model hypothesis, the resulting saturation of the concrete surface layer intensifies the ice formation in this layer and causes salt frost scaling. In this study an experimental technique was developed that makes it possible to quantify to which extent brine uptake can increase ice formation in hardened cement paste (used as a model material for concrete). The experiments were carried out with low temperature differential scanning calorimetry, where specimens were subjected to freeze–thaw cycles while being in contact with NaCl brine. Results showed that the ice content in the specimens increased with subsequent freeze–thaw cycles due to the brine uptake at temperatures below 0 °C. The ability of the hardened cement paste to bind chlorides from the absorbed brine at the same time affected the freezing/melting behavior of the pore solution and the magnitude of the ice content. KW - Beton KW - Frost KW - Beton KW - Frostangriff KW - salt frost attack KW - cryogenic suction KW - chloride binding Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20211207-45392 UR - https://link.springer.com/article/10.1617/s11527-021-01779-7 VL - 2021 IS - issue 54, article 189 SP - 1 EP - 16 ER - TY - JOUR A1 - Patzelt, Max A1 - Erfurt, Doreen A1 - Ludwig, Horst-Michael T1 - Quantification of cracks in concrete thin sections considering current methods of image analysis JF - Journal of Microscopy N2 - Image analysis is used in this work to quantify cracks in concrete thin sections via modern image processing. Thin sections were impregnated with a yellow epoxy resin, to increase the contrast between voids and other phases of the concrete. By the means of different steps of pre-processing, machine learning and python scripts, cracks can be quantified in an area of up to 40 cm2. As a result, the crack area, lengths and widths were estimated automatically within a single workflow. Crack patterns caused by freeze-thaw damages were investigated. To compare the inner degradation of the investigated thin sections, the crack density was used. Cracks in the thin sections were measured manually in two different ways for validation of the automatic determined results. On the one hand, the presented work shows that the width of cracks can be determined pixelwise, thus providing the plot of a width distribution. On the other hand, the automatically measured crack length differs in comparison to the manually measured ones. KW - Beton KW - Rissbildung KW - Bildanalyse KW - Maschinelles Lernen KW - Mikroskopie KW - concrete KW - crack KW - degradation KW - transmitted light microscopy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220811-46754 UR - https://onlinelibrary.wiley.com/doi/full/10.1111/jmi.13091 VL - 2022 IS - Volume 286, Issue 2 SP - 154 EP - 159 ER - TY - JOUR A1 - Hanna, John T1 - Computational Modelling for the Effects of Capsular Clustering on Fracture of Encapsulation-Based Self-Healing Concrete Using XFEM and Cohesive Surface Technique JF - Applied Sciences N2 - The fracture of microcapsules is an important issue to release the healing agent for healing the cracks in encapsulation-based self-healing concrete. The capsular clustering generated from the concrete mixing process is considered one of the critical factors in the fracture mechanism. Since there is a lack of studies in the literature regarding this issue, the design of self-healing concrete cannot be made without an appropriate modelling strategy. In this paper, the effects of microcapsule size and clustering on the fractured microcapsules are studied computationally. A simple 2D computational modelling approach is developed based on the eXtended Finite Element Method (XFEM) and cohesive surface technique. The proposed model shows that the microcapsule size and clustering have significant roles in governing the load-carrying capacity and the crack propagation pattern and determines whether the microcapsule will be fractured or debonded from the concrete matrix. The higher the microcapsule circumferential contact length, the higher the load-carrying capacity. When it is lower than 25% of the microcapsule circumference, it will result in a greater possibility for the debonding of the microcapsule from the concrete. The greater the core/shell ratio (smaller shell thickness), the greater the likelihood of microcapsules being fractured. KW - Beton KW - Mikrokapsel KW - Rissausbreitung KW - Tragfähigkeit KW - self-healing concrete KW - microcapsule KW - capsular clustering KW - circumferential contact length KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220721-46717 UR - https://www.mdpi.com/2076-3417/12/10/5112 VL - 2022 IS - Volume 12, issue 10, article 5112 SP - 1 EP - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Ansari, Meisam A1 - Zacharias, Christin A1 - Könke, Carsten T1 - Metaconcrete: An Experimental Study on the Impact of the Core-Coating Inclusions on Mechanical Vibration JF - materials N2 - Resonance vibration of structures is an unpleasant incident that can be conventionally avoided by using a Tuned Mass Damper (TMD). The scope of this paper contains the utilization of engineered inclusions in concrete as damping aggregates to suppress resonance vibration similar to a TMD. The inclusions are composed of a stainless-steel core with a spherical shape coated with silicone. This configuration has been the subject of several studies and it is best known as Metaconcrete. This paper presents the procedure of a free vibration test conducted with two small-scaled concrete beams. The beams exhibited a higher damping ratio after the core-coating element was secured to them. Subsequently, two meso-models of small-scaled beams were created: one representing conventional concrete and the other representing concrete with the core-coating inclusions. The frequency response curves of the models were obtained. The change in the response peak verified the ability of the inclusions to suppress the resonance vibration. This study concludes that the core-coating inclusions can be utilized in concrete as damping aggregates. KW - Beton KW - Schwingungsdämpfung KW - metaconcrete KW - damping aggregate KW - vibration absorber Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230315-49370 UR - https://www.mdpi.com/1996-1944/16/5/1836 VL - 2023 IS - Volume 16, Issue 5, article 1836 SP - 1 EP - 18 PB - MDPI CY - Basel ER - TY - JOUR A1 - Ansari, Meisam A1 - Tartaglione, Fabiola A1 - Könke, Carsten T1 - Experimental Validation of Dynamic Response of Small-Scale Metaconcrete Beams at Resonance Vibration JF - materials N2 - Structures and their components experience substantially large vibration amplitudes at resonance, which can cause their failure. The scope of this study is the utilization of silicone-coated steel balls in concrete as damping aggregates to suppress the resonance vibration. The heavy steel cores oscillate with a frequency close to the resonance frequency of the structure. Due to the phase difference between the vibrations of the cores and the structure, the cores counteract the vibration of the structure. The core-coating inclusions are randomly distributed in concrete similar to standard aggregates. This mixture is referred to as metaconcrete. The main goal of this work is to validate the ability of the inclusions to suppress mechanical vibration through laboratory experiments. For this purpose, two small-scale metaconcrete beams were cast and tested. In a free vibration test, the metaconcrete beams exhibited a larger damping ratio compared to a similar beam cast from conventional concrete. The vibration amplitudes of the metaconcrete beams at resonance were measured with a frequency sweep test. In comparison with the conventional concrete beam, both metaconcrete beams demonstrated smaller vibration amplitudes. Both experiments verified an improvement in the dynamic response of the metaconcrete beams at resonance vibration. KW - Beton KW - metaconcrete KW - Schwingungsdämpfung KW - damping aggregate KW - vibration absorber KW - free vibration test KW - frequency sweep test Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230818-64154 UR - https://www.mdpi.com/1996-1944/16/14/5029 VL - 2023 IS - volume 16, issue 14, article 5029 SP - 1 EP - 17 PB - MDPI CY - Basel ER -