TY - JOUR A1 - Harirchian, Ehsan A1 - Kumari, Vandana A1 - Jadhav, Kirti A1 - Rasulzade, Shahla A1 - Lahmer, Tom A1 - Raj Das, Rohan T1 - A Synthesized Study Based on Machine Learning Approaches for Rapid Classifying Earthquake Damage Grades to RC Buildings JF - Applied Sciences N2 - A vast number of existing buildings were constructed before the development and enforcement of seismic design codes, which run into the risk of being severely damaged under the action of seismic excitations. This poses not only a threat to the life of people but also affects the socio-economic stability in the affected area. Therefore, it is necessary to assess such buildings’ present vulnerability to make an educated decision regarding risk mitigation by seismic strengthening techniques such as retrofitting. However, it is economically and timely manner not feasible to inspect, repair, and augment every old building on an urban scale. As a result, a reliable rapid screening methods, namely Rapid Visual Screening (RVS), have garnered increasing interest among researchers and decision-makers alike. In this study, the effectiveness of five different Machine Learning (ML) techniques in vulnerability prediction applications have been investigated. The damage data of four different earthquakes from Ecuador, Haiti, Nepal, and South Korea, have been utilized to train and test the developed models. Eight performance modifiers have been implemented as variables with a supervised ML. The investigations on this paper illustrate that the assessed vulnerability classes by ML techniques were very close to the actual damage levels observed in the buildings. KW - Maschinelles Lernen KW - Neuronales Netz KW - Machine learning KW - Building safety assessment KW - artificial neural networks KW - supervised learning KW - damaged buildings KW - rapid classification KW - OA-Publikationsfonds2021 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210818-44853 UR - https://www.mdpi.com/2076-3417/11/16/7540 VL - 2021 IS - Volume 11, issue 16, article 7540 SP - 1 EP - 33 PB - MDPI CY - Basel ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Kumari, Vandana A1 - Jadhav, Kirti A1 - Raj Das, Rohan A1 - Rasulzade, Shahla A1 - Lahmer, Tom T1 - A Machine Learning Framework for Assessing Seismic Hazard Safety of Reinforced Concrete Buildings JF - Applied Sciences N2 - Although averting a seismic disturbance and its physical, social, and economic disruption is practically impossible, using the advancements in computational science and numerical modeling shall equip humanity to predict its severity, understand the outcomes, and equip for post-disaster management. Many buildings exist amidst the developed metropolitan areas, which are senile and still in service. These buildings were also designed before establishing national seismic codes or without the introduction of construction regulations. In that case, risk reduction is significant for developing alternatives and designing suitable models to enhance the existing structure’s performance. Such models will be able to classify risks and casualties related to possible earthquakes through emergency preparation. Thus, it is crucial to recognize structures that are susceptible to earthquake vibrations and need to be prioritized for retrofitting. However, each building’s behavior under seismic actions cannot be studied through performing structural analysis, as it might be unrealistic because of the rigorous computations, long period, and substantial expenditure. Therefore, it calls for a simple, reliable, and accurate process known as Rapid Visual Screening (RVS), which serves as a primary screening platform, including an optimum number of seismic parameters and predetermined performance damage conditions for structures. In this study, the damage classification technique was studied, and the efficacy of the Machine Learning (ML) method in damage prediction via a Support Vector Machine (SVM) model was explored. The ML model is trained and tested separately on damage data from four different earthquakes, namely Ecuador, Haiti, Nepal, and South Korea. Each dataset consists of varying numbers of input data and eight performance modifiers. Based on the study and the results, the ML model using SVM classifies the given input data into the belonging classes and accomplishes the performance on hazard safety evaluation of buildings. KW - Erdbeben KW - Vulnerability KW - Earthquake KW - damaged buildings KW - earthquake safety assessment KW - soft computing techniques KW - rapid visual screening KW - Machine Learning KW - vulnerability assessment KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20201022-42744 UR - https://www.mdpi.com/2076-3417/10/20/7153 VL - 2020 IS - Volume 10, issue 20, article 7153 PB - MDPI CY - Basel ER -