TY - JOUR A1 - Schmitz, Tonia A1 - Kraft, Eckhard T1 - Pilot scale photobioreactor system for land-based macroalgae cultivation JF - Journal of Applied Phycology N2 - Marine macroalgae such as Ulva intestinalis have promising properties as feedstock for cosmetics and pharmaceuticals. However, since the quantity and quality of naturally grown algae vary widely, their exploitability is reduced – especially for producers in high-priced markets. Moreover, the expansion of marine or shore-based cultivation systems is unlikely in Europe, since promising sites either lie in fishing zones, recreational areas, or natural reserves. The aim was therefore to develop a closed photobioreactor system enabling full control of abiotic environmental parameters and an effective reconditioning of the cultivation medium in order to produce marine macroalgae at sites distant from the shore. To assess the feasibility and functionality of the chosen technological concept, a prototypal plant has been implemented in central Germany – a site distant from the sea. Using a newly developed, submersible LED light source, cultivation experiments with Ulva intestinalis led to growth rates of 7.72 ± 0.04 % day−1 in a cultivation cycle of 28 days. Based on the space demand of the production system, this results in fresh mass productivity of 3.0 kg m−2, respectively, of 1.1 kg m−2 per year. Also considering the ratio of biomass to energy input amounting to 2.76 g kWh−1, significant future improvements of the developed photobioreactor system should include the optimization of growth parameters, and the reduction of the system’s overall energy demand. KW - Makroalgen KW - Photobioreaktor KW - macro algae KW - photobioreactor KW - ulva intestinalis KW - LED light source Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20211207-45401 UR - https://link.springer.com/article/10.1007/s10811-021-02617-7 VL - 2021 SP - 1 EP - 10 ER -