TY - CHAP A1 - Hartmann, Maria A1 - Alsaad, Hayder A1 - Völker, Conrad T1 - Das Potential von Fassadenbegrünungen zur Verringerung des Wärmeinseleffekts: Simulation eines Beispielquartiers T2 - Bauphysiktage Kaiserslautern 2022 N2 - Die Auswirkungen einer Fassadenbegrünung auf den Wärmeinseleffekt in Stuttgart wurde für eine Hitzeperiode numerisch simuliert und bewertet. Die Ergebnisse zeigten positive Auswirkungen innerhalb des Simulationsgebiets sowie eine geringe Fernwirkung auf benachbarte Stadtquartiere. Diese Änderungen können zur Verbesserung des thermischen Komforts im Außenraum beitragen. Eine reduzierte Temperatur der Außenoberfläche führt darüber hinaus auch zu einer geringeren Oberflächentemperatur der Wandinnenseite, welche die Innenraumtemperatur beeinflusst. Folglich kann die thermische Behaglichkeit auch im Innenraum erhöht werden. KW - Mikroklima KW - Envi-Met KW - Städtische Wärmeinsel KW - Fassadenbegrünung KW - Living-wall Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220713-46676 SN - 978-3-95974-176-7 SN - 2363-8206 CY - Kaiserslautern ER - TY - JOUR A1 - Völker, Conrad A1 - Alsaad, Hayder T1 - Simulating the human body's microclimate using automatic coupling of CFD and an advanced thermoregulation model JF - Indoor Air N2 - This study aims to develop an approach to couple a computational fluid dynamics (CFD) solver to the University of California, Berkeley (UCB) thermal comfort model to accurately evaluate thermal comfort. The coupling was made using an iterative JavaScript to automatically transfer data for each individual segment of the human body back and forth between the CFD solver and the UCB model until reaching convergence defined by a stopping criterion. The location from which data are transferred to the UCB model was determined using a new approach based on the temperature difference between subsequent points on the temperature profile curve in the vicinity of the body surface. This approach was used because the microclimate surrounding the human body differs in thickness depending on the body segment and the surrounding environment. To accurately simulate the thermal environment, the numerical model was validated beforehand using experimental data collected in a climate chamber equipped with a thermal manikin. Furthermore, an example of the practical implementations of this coupling is reported in this paper through radiant floor cooling simulation cases, in which overall and local thermal sensation and comfort were investigated using the coupled UCB model. KW - Numerische Strömungssimulation KW - Mikroklima KW - Wärmeübergangszahl KW - Wärmeempfindung KW - computational fluid dynamics KW - microclimate KW - UCB model KW - heat transfer coefficient KW - thermal sensation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190218-38517 UR - https://onlinelibrary.wiley.com/doi/full/10.1111/ina.12451 N1 - This is the peer reviewed version of the article published in Indoor Air 28 (3), 415-425 (2018) and may be found in final form at https://doi.org/10.1111/ina.12451. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Copyright 2018 John Wiley & Sons. This article may be downloaded for personal use only. Any other use requires prior permission of the authors and John Wiley & Sons. VL - 2018 IS - 28, Heft 3 SP - 415 EP - 425 ER - TY - JOUR A1 - Völker, Conrad A1 - Mämpel, Silvio A1 - Kornadt, Oliver T1 - Measuring the human body’s micro‐climate using a thermal manikin JF - Indoor Air N2 - The human body is surrounded by a micro‐climate which results from its convective release of heat. In this study, the air temperature and flow velocity of this micro‐climate were measured in a climate chamber at various room temperatures, using a thermal manikin simulating the heat release of the human being. Different techniques (Particle Streak Tracking, thermography, anemometry, and thermistors) were used for measurement and visualization. The manikin surface temperature was adjusted to the particular indoor climate based on simulations with a thermoregulation model (UCBerkeley Thermal Comfort Model). We found that generally, the micro‐climate is thinner at the lower part of the torso, but expands going up. At the head, there is a relatively thick thermal layer, which results in an ascending plume above the head. However, the micro‐climate shape strongly depends not only on the body segment, but also on boundary conditions: the higher the temperature difference between the surface temperature of the manikin and the air temperature, the faster the air flow in the micro‐climate. Finally, convective heat transfer coefficients strongly increase with falling room temperature, while radiative heat transfer coefficients decrease. The type of body segment strongly influences the convective heat transfer coefficient, while only minimally influencing the radiative heat transfer coefficient. KW - Raumklima KW - Mikroklima KW - Wärmeübertragung KW - Strömungsmechanik KW - thermal manikin KW - climate chamber KW - micro climate KW - heat transfer coefficient KW - CFD KW - thermography Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20181025-38153 UR - https://onlinelibrary.wiley.com/doi/abs/10.1111/ina.12112 N1 - This is the peer reviewed version of the following article: "Measuring the human body’s micro‐climate using a thermal manikin", which has been published in final form at https://doi.org/10.1111/ina.12112. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. IS - 24, 6 SP - 567 EP - 579 ER -