TY - JOUR A1 - Hassannataj Joloudari, Javad A1 - Hassannataj Joloudari, Edris A1 - Saadatfar, Hamid A1 - GhasemiGol, Mohammad A1 - Razavi, Seyyed Mohammad A1 - Mosavi, Amir A1 - Nabipour, Narjes A1 - Shamshirband, Shahaboddin A1 - Nadai, Laszlo T1 - Coronary Artery Disease Diagnosis: Ranking the Significant Features Using a Random Trees Model JF - International Journal of Environmental Research and Public Health, IJERPH N2 - Heart disease is one of the most common diseases in middle-aged citizens. Among the vast number of heart diseases, coronary artery disease (CAD) is considered as a common cardiovascular disease with a high death rate. The most popular tool for diagnosing CAD is the use of medical imaging, e.g., angiography. However, angiography is known for being costly and also associated with a number of side effects. Hence, the purpose of this study is to increase the accuracy of coronary heart disease diagnosis through selecting significant predictive features in order of their ranking. In this study, we propose an integrated method using machine learning. The machine learning methods of random trees (RTs), decision tree of C5.0, support vector machine (SVM), and decision tree of Chi-squared automatic interaction detection (CHAID) are used in this study. The proposed method shows promising results and the study confirms that the RTs model outperforms other models. KW - Maschinelles Lernen KW - Machine learning KW - Deep learning KW - coronary artery disease KW - heart disease diagnosis KW - health informatics KW - data science KW - big data KW - predictive model KW - ensemble model KW - random forest KW - industry 4.0 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200213-40819 UR - https://www.mdpi.com/1660-4601/17/3/731 VL - 2020 IS - Volume 17, Issue 3, 731 PB - MDPI ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Lahmer, Tom A1 - Buddhiraju, Sreekanth A1 - Mohammad, Kifaytullah A1 - Mosavi, Amir T1 - Earthquake Safety Assessment of Buildings through Rapid Visual Screening JF - Buildings N2 - Earthquake is among the most devastating natural disasters causing severe economical, environmental, and social destruction. Earthquake safety assessment and building hazard monitoring can highly contribute to urban sustainability through identification and insight into optimum materials and structures. While the vulnerability of structures mainly depends on the structural resistance, the safety assessment of buildings can be highly challenging. In this paper, we consider the Rapid Visual Screening (RVS) method, which is a qualitative procedure for estimating structural scores for buildings suitable for medium- to high-seismic cases. This paper presents an overview of the common RVS methods, i.e., FEMA P-154, IITK-GGSDMA, and EMPI. To examine the accuracy and validation, a practical comparison is performed between their assessment and observed damage of reinforced concrete buildings from a street survey in the Bingöl region, Turkey, after the 1 May 2003 earthquake. The results demonstrate that the application of RVS methods for preliminary damage estimation is a vital tool. Furthermore, the comparative analysis showed that FEMA P-154 creates an assessment that overestimates damage states and is not economically viable, while EMPI and IITK-GGSDMA provide more accurate and practical estimation, respectively. KW - Maschinelles Lernen KW - Machine learning KW - Erdbeben KW - buildings KW - earthquake safety assessment KW - earthquake KW - extreme events KW - seismic assessment KW - natural hazard KW - mitigation KW - rapid visual screening Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200331-41153 UR - https://www.mdpi.com/2075-5309/10/3/51 VL - 2020 IS - Volume 10, Issue 3 PB - MDPI ER - TY - JOUR A1 - Amirinasab, Mehdi A1 - Shamshirband, Shahaboddin A1 - Chronopoulos, Anthony Theodore A1 - Mosavi, Amir A1 - Nabipour, Narjes T1 - Energy‐Efficient Method for Wireless Sensor Networks Low‐Power Radio Operation in Internet of Things JF - electronics N2 - The radio operation in wireless sensor networks (WSN) in Internet of Things (IoT)applications is the most common source for power consumption. Consequently, recognizing and controlling the factors affecting radio operation can be valuable for managing the node power consumption. Among essential factors affecting radio operation, the time spent for checking the radio is of utmost importance for monitoring power consumption. It can lead to false WakeUp or idle listening in radio duty cycles and ContikiMAC. ContikiMAC is a low‐power radio duty‐cycle protocol in Contiki OS used in WakeUp mode, as a clear channel assessment (CCA) for checking radio status periodically. This paper presents a detailed analysis of radio WakeUp time factors of ContikiMAC. Furthermore, we propose a lightweight CCA (LW‐CCA) as an extension to ContikiMAC to reduce the Radio Duty‐Cycles in false WakeUps and idle listening though using dynamic received signal strength indicator (RSSI) status check time. The simulation results in the Cooja simulator show that LW‐CCA reduces about 8% energy consumption in nodes while maintaining up to 99% of the packet delivery rate (PDR). KW - Internet der Dinge KW - Internet of things KW - wireless sensor networks KW - ContikiMAC KW - energy efficiency KW - duty-cycles KW - clear channel assessments KW - fog computing KW - smart sensors KW - signal processing KW - received signal strength indicator KW - OA-Publikationsfonds2020 KW - RSSI Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200213-40954 UR - https://www.mdpi.com/2079-9292/9/2/320 VL - 2020 IS - volume 9, issue 2, 320 PB - MDPI ER - TY - JOUR A1 - Kargar, Katayoun A1 - Samadianfard, Saeed A1 - Parsa, Javad A1 - Nabipour, Narjes A1 - Shamshirband, Shahaboddin A1 - Mosavi, Amir A1 - Chau, Kwok-Wing T1 - Estimating longitudinal dispersion coefficient in natural streams using empirical models and machine learning algorithms JF - Engineering Applications of Computational Fluid Mechanics N2 - The longitudinal dispersion coefficient (LDC) plays an important role in modeling the transport of pollutants and sediment in natural rivers. As a result of transportation processes, the concentration of pollutants changes along the river. Various studies have been conducted to provide simple equations for estimating LDC. In this study, machine learning methods, namely support vector regression, Gaussian process regression, M5 model tree (M5P) and random forest, and multiple linear regression were examined in predicting the LDC in natural streams. Data sets from 60 rivers around the world with different hydraulic and geometric features were gathered to develop models for LDC estimation. Statistical criteria, including correlation coefficient (CC), root mean squared error (RMSE) and mean absolute error (MAE), were used to scrutinize the models. The LDC values estimated by these models were compared with the corresponding results of common empirical models. The Taylor chart was used to evaluate the models and the results showed that among the machine learning models, M5P had superior performance, with CC of 0.823, RMSE of 454.9 and MAE of 380.9. The model of Sahay and Dutta, with CC of 0.795, RMSE of 460.7 and MAE of 306.1, gave more precise results than the other empirical models. The main advantage of M5P models is their ability to provide practical formulae. In conclusion, the results proved that the developed M5P model with simple formulations was superior to other machine learning models and empirical models; therefore, it can be used as a proper tool for estimating the LDC in rivers. KW - Maschinelles Lernen KW - Gaussian process regression KW - longitudinal dispersion coefficient KW - M5 model tree KW - random forest KW - support vector regression KW - rivers Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200128-40775 UR - https://www.tandfonline.com/doi/full/10.1080/19942060.2020.1712260 VL - 2020 IS - Volume 14, No. 1 SP - 311 EP - 322 PB - Taylor & Francis ER - TY - JOUR A1 - Ahmadi, Mohammad Hossein A1 - Baghban, Alireza A1 - Sadeghzadeh, Milad A1 - Zamen, Mohammad A1 - Mosavi, Amir A1 - Shamshirband, Shahaboddin A1 - Kumar, Ravinder A1 - Mohammadi-Khanaposhtani, Mohammad T1 - Evaluation of electrical efficiency of photovoltaic thermal solar collector JF - Engineering Applications of Computational Fluid Mechanics N2 - In this study, machine learning methods of artificial neural networks (ANNs), least squares support vector machines (LSSVM), and neuro-fuzzy are used for advancing prediction models for thermal performance of a photovoltaic-thermal solar collector (PV/T). In the proposed models, the inlet temperature, flow rate, heat, solar radiation, and the sun heat have been considered as the input variables. Data set has been extracted through experimental measurements from a novel solar collector system. Different analyses are performed to examine the credibility of the introduced models and evaluate their performances. The proposed LSSVM model outperformed the ANFIS and ANNs models. LSSVM model is reported suitable when the laboratory measurements are costly and time-consuming, or achieving such values requires sophisticated interpretations. KW - Fotovoltaik KW - Erneuerbare Energien KW - Solar KW - Deep learning KW - Machine learning KW - Renewable energy KW - neural networks (NNs) KW - adaptive neuro-fuzzy inference system (ANFIS) KW - least square support vector machine (LSSVM) KW - photovoltaic-thermal (PV/T) KW - hybrid machine learning model KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200304-41049 UR - https://www.tandfonline.com/doi/full/10.1080/19942060.2020.1734094 VL - 2020 IS - volume 14, issue 1 SP - 545 EP - 565 PB - Taylor & Francis ER - TY - JOUR A1 - Nabipour, Narjes A1 - Mosavi, Amir A1 - Baghban, Alireza A1 - Shamshirband, Shahaboddin A1 - Felde, Imre T1 - Extreme Learning Machine-Based Model for Solubility Estimation of Hydrocarbon Gases in Electrolyte Solutions JF - Processes N2 - Calculating hydrocarbon components solubility of natural gases is known as one of the important issues for operational works in petroleum and chemical engineering. In this work, a novel solubility estimation tool has been proposed for hydrocarbon gases—including methane, ethane, propane, and butane—in aqueous electrolyte solutions based on extreme learning machine (ELM) algorithm. Comparing the ELM outputs with a comprehensive real databank which has 1175 solubility points yielded R-squared values of 0.985 and 0.987 for training and testing phases respectively. Furthermore, the visual comparison of estimated and actual hydrocarbon solubility led to confirm the ability of proposed solubility model. Additionally, sensitivity analysis has been employed on the input variables of model to identify their impacts on hydrocarbon solubility. Such a comprehensive and reliable study can help engineers and scientists to successfully determine the important thermodynamic properties, which are key factors in optimizing and designing different industrial units such as refineries and petrochemical plants. KW - Maschinelles Lernen KW - Machine learning KW - Deep learning Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200113-40624 UR - https://www.mdpi.com/2227-9717/8/1/92 VL - 2020 IS - Volume 8, Issue 1, 92 PB - MDPI ER - TY - JOUR A1 - Shamshirband, Shahaboddin A1 - Joloudari, Javad Hassannataj A1 - GhasemiGol, Mohammad A1 - Saadatfar, Hamid A1 - Mosavi, Amir A1 - Nabipour, Narjes T1 - FCS-MBFLEACH: Designing an Energy-Aware Fault Detection System for Mobile Wireless Sensor Networks JF - Mathematics N2 - Wireless sensor networks (WSNs) include large-scale sensor nodes that are densely distributed over a geographical region that is completely randomized for monitoring, identifying, and analyzing physical events. The crucial challenge in wireless sensor networks is the very high dependence of the sensor nodes on limited battery power to exchange information wirelessly as well as the non-rechargeable battery of the wireless sensor nodes, which makes the management and monitoring of these nodes in terms of abnormal changes very difficult. These anomalies appear under faults, including hardware, software, anomalies, and attacks by raiders, all of which affect the comprehensiveness of the data collected by wireless sensor networks. Hence, a crucial contraption should be taken to detect the early faults in the network, despite the limitations of the sensor nodes. Machine learning methods include solutions that can be used to detect the sensor node faults in the network. The purpose of this study is to use several classification methods to compute the fault detection accuracy with different densities under two scenarios in regions of interest such as MB-FLEACH, one-class support vector machine (SVM), fuzzy one-class, or a combination of SVM and FCS-MBFLEACH methods. It should be noted that in the study so far, no super cluster head (SCH) selection has been performed to detect node faults in the network. The simulation outcomes demonstrate that the FCS-MBFLEACH method has the best performance in terms of the accuracy of fault detection, false-positive rate (FPR), average remaining energy, and network lifetime compared to other classification methods. KW - Vernetzung KW - wireless sensor networks KW - machine learning KW - Funktechnik KW - Sensor KW - Maschinelles Lernen KW - Internet of Things KW - OA-Publikationsfonds2019 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200107-40541 UR - https://www.mdpi.com/2227-7390/8/1/28 VL - 2020 IS - Volume 8, Issue 1, article 28 PB - MDPI ER - TY - JOUR A1 - Shabani, Sevda A1 - Samadianfard, Saeed A1 - Sattari, Mohammad Taghi A1 - Mosavi, Amir A1 - Shamshirband, Shahaboddin A1 - Kmet, Tibor A1 - Várkonyi-Kóczy, Annamária R. T1 - Modeling Pan Evaporation Using Gaussian Process Regression K-Nearest Neighbors Random Forest and Support Vector Machines; Comparative Analysis JF - Atmosphere N2 - Evaporation is a very important process; it is one of the most critical factors in agricultural, hydrological, and meteorological studies. Due to the interactions of multiple climatic factors, evaporation is considered as a complex and nonlinear phenomenon to model. Thus, machine learning methods have gained popularity in this realm. In the present study, four machine learning methods of Gaussian Process Regression (GPR), K-Nearest Neighbors (KNN), Random Forest (RF) and Support Vector Regression (SVR) were used to predict the pan evaporation (PE). Meteorological data including PE, temperature (T), relative humidity (RH), wind speed (W), and sunny hours (S) collected from 2011 through 2017. The accuracy of the studied methods was determined using the statistical indices of Root Mean Squared Error (RMSE), correlation coefficient (R) and Mean Absolute Error (MAE). Furthermore, the Taylor charts utilized for evaluating the accuracy of the mentioned models. The results of this study showed that at Gonbad-e Kavus, Gorgan and Bandar Torkman stations, GPR with RMSE of 1.521 mm/day, 1.244 mm/day, and 1.254 mm/day, KNN with RMSE of 1.991 mm/day, 1.775 mm/day, and 1.577 mm/day, RF with RMSE of 1.614 mm/day, 1.337 mm/day, and 1.316 mm/day, and SVR with RMSE of 1.55 mm/day, 1.262 mm/day, and 1.275 mm/day had more appropriate performances in estimating PE values. It was found that GPR for Gonbad-e Kavus Station with input parameters of T, W and S and GPR for Gorgan and Bandar Torkmen stations with input parameters of T, RH, W and S had the most accurate predictions and were proposed for precise estimation of PE. The findings of the current study indicated that the PE values may be accurately estimated with few easily measured meteorological parameters. KW - Maschinelles Lernen KW - Machine learning KW - Deep learning Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200110-40561 UR - https://www.mdpi.com/2073-4433/11/1/66 VL - 2020 IS - Volume 11, Issue 1, 66 ER - TY - INPR A1 - Mosavi, Amir A1 - Moeini, Iman A1 - Ahmadpour, Mohammad A1 - Alharbi, Naif A1 - E. Gorji, Nima T1 - Modeling the time-dependent characteristics of perovskite solar cells N2 - We proposed two different time-dependent modeling approaches for variation of device characteristics of perovskite solar cells under stress conditions. The first approach follows Sah-Noyce-Shockley (SNS) model based on Shockley–Read–Hall recombination/generation across the depletion width of pn junction and the second approach is based on thermionic emission model for Schottky diodes. The connecting point of these approaches to time variation is the time-dependent defect generation in depletion width (W) of the junction. We have fitted the two models with experimental data reported in the literature to perovskite solar cell and found out that each model has a superior explanation for degradation of device metrics e.g. current density and efficiency by time under stress conditions. Nevertheless, the Sah-Noyce-Shockley model is more reliable than thermionic emission at least for solar cells. KW - Solarzelle KW - Solar KW - Solar cells KW - Modeling KW - Time-dependent KW - Defect generation KW - Perovskite Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20180907-37573 N1 - Published in final form at https://doi.org/10.1016/j.solener.2018.05.082. ER - TY - JOUR A1 - Shamshirband, Shahaboddin A1 - Babanezhad, Meisam A1 - Mosavi, Amir A1 - Nabipour, Narjes A1 - Hajnal, Eva A1 - Nadai, Laszlo A1 - Chau, Kwok-Wing T1 - Prediction of flow characteristics in the bubble column reactor by the artificial pheromone-based communication of biological ants JF - Engineering Applications of Computational Fluid Mechanics N2 - A novel combination of the ant colony optimization algorithm (ACO)and computational fluid dynamics (CFD) data is proposed for modeling the multiphase chemical reactors. The proposed intelligent model presents a probabilistic computational strategy for predicting various levels of three-dimensional bubble column reactor (BCR) flow. The results prove an enhanced communication between ant colony prediction and CFD data in different sections of the BCR. KW - Maschinelles Lernen KW - Machine learning KW - Bubble column reactor KW - ant colony optimization algorithm (ACO) KW - flow pattern KW - computational fluid dynamics (CFD) KW - big data KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200227-41013 UR - https://www.tandfonline.com/doi/full/10.1080/19942060.2020.1715842 VL - 2020 IS - volume 14, issue 1 SP - 367 EP - 378 PB - Taylor & Francis ER -