TY - RPRT A1 - Wetzstein, Gordon A1 - Bimber, Oliver T1 - Radiometric Compensation through Inverse Light Transport N2 - Radiometric compensation techniques allow seamless projections onto complex everyday surfaces. Implemented with projector-camera systems they support the presentation of visual content in situations where projection-optimized screens are not available or not desired - as in museums, historic sites, air-plane cabins, or stage performances. We propose a novel approach that employs the full light transport between a projector and a camera to account for many illumination aspects, such as interreflections, refractions and defocus. Precomputing the inverse light transport in combination with an efficient implementation on the GPU makes the real-time compensation of captured local and global light modulations possible. KW - Association for Computing Machinery / Special Interest Group on Graphics KW - CGI KW - Maschinelles Sehen KW - Projektionssystem KW - radiometrische Kompensation KW - Licht Transport KW - Projector-Camera Systems KW - Radiometric Compensation KW - Inverse Light Transport Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-8126 ER - TY - RPRT A1 - Kurz, Daniel A1 - Häntsch, Ferry A1 - Grosse, Max A1 - Schiewe, Alexander A1 - Bimber, Oliver T1 - Laser Pointer Tracking in Projector-Augmented Architectural Environments N2 - We present a system that applies a custom-built pan-tilt-zoom camera for laser-pointer tracking in arbitrary real environments. Once placed in a building environment, it carries out a fully automatic self-registration, registrations of projectors, and sampling of surface parameters, such as geometry and reflectivity. After these steps, it can be used for tracking a laser spot on the surface as well as an LED marker in 3D space, using inter-playing fisheye context and controllable detail cameras. The captured surface information can be used for masking out areas that are critical to laser-pointer tracking, and for guiding geometric and radiometric image correction techniques that enable a projector-based augmentation on arbitrary surfaces. We describe a distributed software framework that couples laser-pointer tracking for interaction, projector-based AR as well as video see-through AR for visualizations with the domain specific functionality of existing desktop tools for architectural planning, simulation and building surveying. KW - Association for Computing Machinery / Special Interest Group on Graphics KW - CGI KW - Architektur KW - Maschinelles Sehen KW - Laserpointer Tracking KW - Erweiterte Realität KW - Interaktion KW - Projektion KW - Verteilte Systeme KW - Laser Pointer Tracking KW - Augmented Reality KW - Interaction KW - Projection KW - Distributed Systems Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-8183 ER - TY - RPRT A1 - Grundhöfer, Anselm A1 - Seeger, Manja A1 - Häntsch, Ferry A1 - Bimber, Oliver T1 - Dynamic Adaptation of Projected Imperceptible Codes N2 - In this paper we present a novel adaptive imperceptible pattern projection technique that considers parameters of human visual perception. A coded image that is invisible for human observers is temporally integrated into the projected image, but can be reconstructed by a synchronized camera. The embedded code is dynamically adjusted on the fly to guarantee its non-perceivability and to adapt it to the current camera pose. Linked with real-time flash keying, for instance, this enables in-shot optical tracking using a dynamic multi-resolution marker technique. A sample prototype is realized that demonstrates the application of our method in the context of augmentations in television studios. KW - Association for Computing Machinery / Special Interest Group on Graphics KW - CGI KW - Maschinelles Sehen KW - Erweiterte Realität KW - Kamera Tracking KW - Projektion KW - Augmented Reality KW - Camera Tracking KW - Projection Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-8168 ER -