TY - CHAP A1 - Miro, Shorash A1 - Hartmann, Dietrich A1 - Schanz, Tom A1 - Zarev, Veselin ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - SYSTEM IDENTIFICATION METHODS FOR GROUND MODELS IN MECHANIZED TUNNELING T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - Due to the complex interactions between the ground, the driving machine, the lining tube and the built environment, the accurate assignment of in-situ system parameters for numerical simulation in mechanized tunneling is always subject to tremendous difficulties. However, the more accurate these parameters are, the more applicable the responses gained from computations will be. In particular, if the entire length of the tunnel lining is examined, then, the appropriate selection of various kinds of ground parameters is accountable for the success of a tunnel project and, more importantly, will prevent potential casualties. In this context, methods of system identification for the adaptation of numerical simulation of ground models are presented. Hereby, both deterministic and probabilistic approaches are considered for typical scenarios representing notable variations or changes in the ground model. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27771 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Scheiber, Frank ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - ROBUSTNESS IN CIVIL ENGINEERING - INFLUENCES OF THE STRUCTURAL MODEL ON THE EVALUATION OF THE STRUCTURAL ROBUSTNESS T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - The topic of structural robustness is covered extensively in current literature in structural engineering. A few evaluation methods already exist. Since these methods are based on different evaluation approaches, the comparison is difficult. But all the approaches have one in common, they need a structural model which represents the structure to be evaluated. As the structural model is the basis of the robustness evaluation, there is the question if the quality of the chosen structural model is influencing the estimation of the structural robustness index. This paper shows what robustness in structural engineering means and gives an overview of existing assessment methods. One is the reliability based robustness index, which uses the reliability indices of a intact and a damaged structure. The second one is the risk based robustness index, which estimates the structural robustness by the usage of direct and indirect risk. The paper describes how these approaches for the evaluation of structural robustness works and which parameters will be used. Since both approaches needs a structural model for the estimation of the structural behavior and the probability of failure, it is necessary to think about the quality of the chosen structural model. Nevertheless, the chosen model has to represent the structure, the input factors and reflect the damages which occur. On the example of two different model qualities, it will be shown, that the model choice is really influencing the quality of the robustness index. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27845 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Nechytailo, Oleksandr A1 - Horokhov, Yevgen A1 - Kushchenko, Vladimir ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - ANALYSIS OF THE MODE OF DEFORMATION OF THE SUB-PULLEY STRUCTURES ON SHAFT SLOPING HEADGEAR STRUCTURES T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - A numerical analysis of the mode of deformation of the main load-bearing components of a typical frame sloping shaft headgear was performed. The analysis was done by a design model consisting of plane and solid finite elements, which were modeled in the program «LIRA». Due to the numerical results, the regularities of local stress distribution under a guide pulley bearing were revealed and parameters of a plane stress under both emergency and normal working loads were determined. In the numerical simulation, the guidelines to improve the construction of the joints of guide pulleys resting on sub-pulley frame-type structures were established. Overall, the results obtained are the basis for improving the engineering procedures of designing steel structures of shaft sloping headgear. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27826 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Lahmer, Tom A1 - Ghorashi, Seyed Shahram ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - XFEM-BASED CRACK IDENTIFICATION APPLYING REGULARIZING METHODS IN A MULTILEVEL APPROACH T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - Many structures in different engineering applications suffer from cracking. In order to make reliable prognosis about the serviceability of those structures it is of utmost importance to identify cracks as precisely as possible by non-destructive testing. A novel approach (XIGA), which combines the Isogeometric Analysis (IGA) and the Extended Finite Element Method (XFEM) is used for the forward problem, namely the analysis of a cracked material, see [1]. Applying the NURBS (Non-Uniform Rational B-Spline) based approach from IGA together with the XFEM allows to describe effectively arbitrarily shaped cracks and avoids the necessity of remeshing during the crack identification problem. We want to exploit these advantages for the inverse problem of detecting existing cracks by non-destructive testing, see e.g. [2]. The quality of the reconstructed cracks however depends on two major issues, namely the quality of the measured data (measurement error) and the discretization of the crack model. The first one will be taken into account by applying regularizing methods with a posteriori stopping criteria. The second one is critical in the sense that too few degrees of freedom, i.e. the number of control points of the NURBS, do not allow for a precise description of the crack. An increased number of control points, however, increases the number of unknowns in the inverse analysis and intensifies the ill-posedness. The trade-off between accuracy and stability is aimed to be found by applying an inverse multilevel algorithm [3, 4] where the identification is started with short knot vectors which successively will be enlarged during the identification process. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27717 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Keitel, Holger ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - QUANTIFYING THE QUALITY OF PARTIAL MODEL COUPLING AND ITS EFFECT ON THE SIMULATED STRUCTURAL BEHAVIOR T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - The process of analysis and design in structural engineering requires the consideration of different partial models, for example loading, structural materials, structural elements, and analysis types. The various partial models are combined by coupling several of their components. Due to the large number of available partial models describing similar phenomena, many different model combinations are possible to simulate the same aspects of a structure. The challenging task of an engineer is to select a model combination that ensures a sufficient, reliable prognosis. In order to achieve this reliable prognosis of the overall structural behavior, a high individual quality of the partial models and an adequate coupling of the partial models is required. Several methodologies have been proposed to evaluate the quality of partial models for their intended application, but a detailed study of the coupling quality is still lacking. This paper proposes a new approach to assess the coupling quality of partial models in a quantitative manner. The approach is based on the consistency of the coupled data and applies for uni- and bidirectional coupled partial models. Furthermore, the influence of the coupling quality on the output quantities of the partial models is considered. The functionality of the algorithm and the effect of the coupling quality are demonstrated using an example of coupled partial models in structural engineering. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27689 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Kulchytskyy, Artem A1 - Horokhov, Yevgen A1 - Gubanov, Vadim A1 - Golikov, Alexandr ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - THE INFLUENCE OF THE LOCAL CONCAVITY ON THE FUNCTIONING OF BEARING SHELL OF HIGH-RISE CONSTRUCTION T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - Areas with various defects and damages, which reduce carrying capacity, were examined in a study of metal chimneys. In this work, the influence of the local dimples on the function of metal chimneys was considered. Modeling tasks were completed in the software packages LIRA and ANSYS. Parameters were identified, which characterize the local dimples, and a numerical study of the influence of local dimples on the stress-strain state of shells of metal chimneys was conducted. A distribution field of circular and meridional tension was analyzed in a researched area. Zones of influence of dimples on the bearing cover of metal chimneys were investigated. The bearing capacities of high-rise structures with various dimple geometries and various cover parameters were determined with respect to specified areas of the trunk. Dependent relationships are represented graphically for the decrease in bearing capacity of a cover with respect to dimples. Diameter and thickness of covers of metal chimneys were constructed according to the resulting data. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27701 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Wudtke, Idna ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - CONSTITUTIVE MODELING OF CRYSTALLINE MATERIALS WITH TEXTURE CHARACTERISTICS T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - The analysis of the response of complex structural systems requires the description of the material constitutive relations by means of an appropriate material model. The level of abstraction of such model may strongly affect the quality of the prognosis of the whole structure. In context to this fact, it is necessary to describe the material in a convenient sense as exact but as simple as possible. All material phenomena of crystalline materials e.g. steel, affecting the behavior of the structure, rely on physical effects which are interacting over spatial scales from subatomic to macroscopic range. Nevertheless, if the material is microscopically heterogenic, it might be appropriate to use phenomenological models for the purpose of civil engineering. Although constantly applied, these models are insufficient for steel materials with microscopic characteristics such as texture, typically occurring in hot rolled steel members or heat affected zones of welded joints. Hence, texture is manifested in crystalline materials as a regular crystallographic structure and crystallite orientation, influencing macroscopic material properties. The analysis of structural response of material with texture (e.g. rolled steel or heat affected zone of a welded joint) obliges the extension of the phenomenological material description of macroscopic scale by means of microscopic information. This paper introduces an enrichment approach for material models based on a hierarchical multiscale methodology. This has been done by describing the grain texture on a mesoscopic scale and coupling it with macroscopic constitutive relations by means of homogenization. Due to a variety of available homogenization methods, the question of an assessment of coupling quality arises. The applicability of the method and the effect of the coupling method on the reliability of the response are presented on an example. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27910 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Schmeikal, Bernd Anton ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - BAUHAUS ISOMETRY AND FIELDS T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - While integration increases by networking, segregation strides ahead too. Most of us fixate our mind on special topics. Yet we are relying on our intuition too. We are sometimes waiting for the inflow of new ideas or valuable information that we hold in high esteem, although we are not entirely conscious of its origin. We may even say the most precious intuitions are rooting in deep subconscious, collective layers of the mind. Take as a simple example the emergence of orientation in paleolithic events and its relation to the dihedral symmetry of the compass. Consider also the extension of this algebraic matter into the operational structures of the mind on the one hand and into the algebra of geometry, Clifford algebra as we use to call it today, on the other. Culture and mind, and even the individual act of creation may be connected with transient events that are subconscious and inaccessible to cognition in principle. Other events causative for our work may be merely invisible too us, though in principle they should turn out attainable. In this case we are just ignorant of the whole creative process. Sometimes we begin to use unusual tools or turn into handicraft enthusiasts. Then our small institutes turn into workshops and factories. All this is indeed joining with the Bauhaus and its spirit. We shall go together into this, and we shall present a record of this session. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27859 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Castillo-Pérez, Raúl A1 - Cedillo - Díaz, A. del C. A1 - Kravchenko, Vladislav A1 - Oviedo - Galdeano, H. ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - COMPUTATION OF THE REFLECTANCE AND TRANSMITTANCE FOR AN INHOMOGENEOUS LAYERED MEDIUM WITH TURNING POINT S USING THE WKB AND SPPS METHODS T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - Electromagnetic wave propagation is currently present in the vast majority of situations which occur in veryday life, whether in mobile communications, DTV, satellite tracking, broadcasting, etc. Because of this the study of increasingly complex means of propagation of lectromagnetic waves has become necessary in order to optimize resources and increase the capabilities of the devices as required by the growing demand for such services. Within the electromagnetic wave propagation different parameters are considered that characterize it under various circumstances and of particular importance are the reflectance and transmittance. There are several methods or the analysis of the reflectance and transmittance such as the method of approximation by boundary condition, the plane wave expansion method (PWE), etc., but this work focuses on the WKB and SPPS methods. The implementation of the WKB method is relatively simple but is found to be relatively efficient only when working at high frequencies. The SPPS method (Spectral Parameter Powers Series) based on the theory of pseudoanalytic functions, is used to solve this problem through a new representation for solutions of Sturm Liouville equations and has recently proven to be a powerful tool to solve different boundary value and eigenvalue problems. Moreover, it has a very suitable structure for numerical implementation, which in this case took place in the Matlab software for the valuation of both conventional and turning points profiles. The comparison between the two methods allows us to obtain valuable information about their perfor mance which is useful for determining the validity and propriety of their application for solving problems where these parameters are calculated in real life applications. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170306-27598 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - THES A1 - Karaki, Ghada T1 - Assessment of coupled models of bridges considering time-dependent vehicular loading N2 - Bridge vibration due to traffic loading has been a subject of extensive research in the last decades. The focus of such research has been to develop solution algorithms and investigate responses or behaviors of interest. However, proving the quality and reliability of the model output in structural engineering has become a topic of increasing importance. Therefore, this study is an attempt to extend concepts of uncertainty and sensitivity analyses to assess the dynamic response of a coupled model in bridge engineering considering time-dependent vehicular loading. A setting for the sensitivity analysis is proposed, which enables performing the sensitivity analysis considering random stochastic processes. The classical and proposed sensitivity settings are used to identify the relevant input parameters and models that have the most influence on the variance of the dynamic response. The sensitivity analysis exercises the model itself and extracts results without the need for measurements or reference solutions; however, it does not offer a means of ranking the coupled models studied. Therefore, concepts of total uncertainty are employed to rank the coupled models studied according to their fitness in describing the dynamic problem. The proposed procedures are applied in two examples to assess the output of coupled subsystems and coupled partial models in bridge engineering considering the passage of a heavy vehicle at various speeds. N2 - Brückenschwingungen infolge von Verkehrslasten sind seit mehreren Jahrzehnten Gegenstand intensiver Forschung. Im Fokus stand hierbei im Besonderen die Entwicklung von Lösungsalgorithmen zur Ermittlung des dynamischen Bauwerkverhaltens. Begleitet ist diese Entwicklung von der Frage nach der Qualität und Zuverlässigkeit dieser Modelle für den Gebrauch im konstruktiven Ingenieurbau. In diesem Zusammenhang werden in der vorliegenden Arbeit Konzepte der Unsicherheits- und Sensitivitätsanalyse erweitert, um das dynamische Bauwerkverhalten unter Berücksichtigung transienter Fahrzeuglasten bei gekoppelten Modellen des Brückenbaus zu bewerten. Bestehende Sensitivitätsanalysen werden ergänzt, um diese auch unter Berücksichtigung von stochastischen Prozessen durchführen zu können. Die klassische und die erweiterte Methode werden angewandt, um relevante Eingangsparameter sowie Partialmodelle mit wesentlichem Einfluss auf die Varianz der dynamischen Strukturantwort zu identifizieren. Die mit Hilfe der Sensitivitätsanalyse ermittelbaren Kennzahlen können ohne Bezug zu einer Referenzlösung in die Modellbewertung einfließen, allerdings ist es nicht möglich, die Modelle hinsichtlich der realitätsnahen Abbildung des dynamischen Problems zu bewerten. Um dies zu ermöglichen, wurden Konzepte der Gesamtunsicherheit verwendet. Die vorgestellten Methoden wurden auf zwei Beispiele angewandt, um die Ergebnisse von gekoppelten Subsystemen und gekoppelten Partialmodellen des Brückenbaus zu evaluieren. Hierbei handelt es sich um die Überfahrt von schweren Fahrzeugen mit verschiedenen Geschwindigkeiten. T3 - Schriftenreihe des DFG Graduiertenkollegs 1462 Modellqualitäten // Graduiertenkolleg Modellqualitäten - 5 KW - Ingenieurbau KW - bridge-vehicle interaction KW - random vibrations KW - sensitivity and uncertainty analysis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20120402-15894 ER -