TY - JOUR A1 - Linnow, Kirsten A1 - Niermann, Michael A1 - Bonatz, Dennis A1 - Posern, Konrad A1 - Steiger, Michael T1 - Experimental Studies of the Mechanism and Kinetics of Hydration Reactions JF - Energy Procedia N2 - The mechanism and the kinetics of hydration reactions are important for the application of a salt hydrate as a thermochemical heat storage material. MgSO4·H2O and Na2SO4 were chosen in this study because they are both promising candidates for such an application. Considering that the hydration of these salts yields MgSO4·7H2O and Na2SO4·10H2O as the reaction products, the maximum overall heat effect can be calculated from the heat of condensation of water vapor (44 kJ mol–1) and the heats of hydration of 75 kJ·mol-1 (for MgSO4·H2O) and 81 kJ mol-1 (for Na2SO4). Based on the densities of the two hydrated phases, this results in the very high theoretical energy densities of 2.3 GJ·m-3 and 2.4 GJ·m-3, respectively, for MgSO4·7H2O and Na2SO4·10H2O. Not only the energy density is important for the dimensioning of a storage system, but also the kinetics of hydration reactions play a major role for the application as storage material. In the present study, hydration reactions under varying climatic conditions were investigated by using water vapor sorption measurements and in-situ Raman microscopy. Using the phase diagrams, it can be clearly shown that the mechanism and the kinetics depend on the climatic conditions. Below the deliquescence humidity of the lower hydrated phase the hydration proceeds as solid state reaction, whilst above the deliquescence humidity a through solution mechanism takes place. KW - Wärmespeicherung KW - Hydratation KW - Magnesiumsulfat KW - Natriumsulfat KW - hermochemical heat storage, hydration mechanism, magnesium sulfate; sodium sulfate Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170425-31484 SP - 394 EP - 404 ER - TY - JOUR A1 - Motra, Hem Bahadur A1 - Hildebrand, Jörg A1 - Dimmig-Osburg, Andrea T1 - Assessment of strain measurement techniques to characterise mechanical properties of structural steel JF - Engineering Science and Technology, an International Journal N2 - Strain measurement is important in mechanical testing. A wide variety of techniques exists for measuring strain in the tensile test; namely the strain gauge, extensometer, stress and strain determined by machine crosshead motion, Geometric Moire technique, optical strain measurement techniques and others. Each technique has its own advantages and disadvantages. The purpose of this study is to quantitatively compare the strain measurement techniques. To carry out the tensile test experiments for S 235, sixty samples were cut from the web of the I-profile in longitudinal and transverse directions in four different dimensions. The geometry of samples are analysed by 3D scanner and vernier caliper. In addition, the strain values were determined by using strain gauge, extensometer and machine crosshead motion. Three techniques of strain measurement are compared in quantitative manner based on the calculation of mechanical properties (modulus of elasticity, yield strength, tensile strength, percentage elongation at maximum force) of structural steel. A statistical information was used for evaluating the results. It is seen that the extensometer and strain gauge provided reliable data, however the extensometer offers several advantages over the strain gauge and crosshead motion for testing structural steel in tension. Furthermore, estimation of measurement uncertainty is presented for the basic material parameters extracted through strain measurement. KW - Baustahl KW - Werkstoffprüfung KW - Zugversuch KW - Affecting factors; Measurement uncertainty; Materials testing; Quantitative comparison; Strain comparison; Tensile test Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170425-31540 SP - 260 EP - 269 ER - TY - JOUR A1 - Schuch, Kai A1 - Kaps, Christian T1 - Reifungs- und Strukturbildungsprozesse bei Bindern mit wässrigen Alkalisilikat-Lösungen N2 - Durch Reifungs- und Strukturbildungsprozesse kann es bei silikatischen und alumosilikatischen Bindern zu Rissbildung bei behinderter Verformung, Festigkeitsverlust und somit Verlust der Dauerhaftigkeit kommen. Die Bewertung dieser Prozesse erfolgt an silikatischen Materialien mit einem Ausblick auf die alumosilikatischen Binder. KW - Alkalisilikat KW - Wasserglas KW - Bindemittel KW - Silikat KW - Wasserglas KW - Reifungsprozess KW - Strukturbildungsprozess KW - Alumosilikat KW - Silikat Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170728-32682 UR - https://e-pub.uni-weimar.de/opus4/frontdoor/index/index/docId/3267 SP - 1 EP - 17 ER - TY - JOUR A1 - Schuch, Kai A1 - Kaps, Christian T1 - Reifungs- und Strukturbildungsprozesse bei Bindern mit wässrigen Alkalisilikat-Lösungen N2 - Durch Reifungs- und Strukturbildungsprozesse kann es bei silikatischen und alumosilikatischen Bindern zu Rissbildung bei behinderter Verformung, Festigkeitsverlust und somit Verlust der Dauerhaftigkeit kommen. Die Bewertung dieser Prozesse erfolgt an silikatischen Materialien mit einem Ausblick auf die alumosilikatischen Binder KW - Alkalisilikat KW - Wasserglas KW - Bindemittel KW - Silikat KW - Wasserglas KW - Reifungsprozess KW - Strukturbildungsprozess KW - Alumosilikat KW - Silikat Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170718-32675 UR - https://e-pub.uni-weimar.de/opus4/frontdoor/index/index/docId/3268 SP - 1 EP - 17 ER - TY - JOUR A1 - Jentsch, Mark F. A1 - Kulle, Christoph A1 - Bode, Tobias A1 - Pauer, Toni A1 - Osburg, Andrea A1 - Namgyel, Karma A1 - Euthra, Karma A1 - Dukjey, Jamyang A1 - Tenzin, Karma T1 - Field study of the building physics properties of common building types in the Inner Himalayan valleys of Bhutan JF - Energy for Sustainable Development 38 N2 - Traditionally, buildings in the Inner Himalayan valleys of Bhutan were constructed from rammed earth in the western regions and quarry stone in the central and eastern regions. Whilst basic architectural design elements have been retained, the construction methods have however changed over recent decades alongside expectations for indoor thermal comfort. Nevertheless, despite the need for space heating, thermal building performance remains largely unknown. Furthermore, no dedicated climate data is available for building performance assessments. This paper establishes such climatological information for the capital Thimphu and presents an investigation of building physics properties of traditional and contemporary building types. In a one month field study 10 buildings were surveyed, looking at building air tightness, indoor climate, wall U-values and water absorption of typical wall construction materials. The findings highlight comparably high wall U-values of 1.0 to 1.5 W/m²K for both current and historic constructions. Furthermore, air tightness tests show that, due to poorly sealed joints between construction elements, windows and doors, many buildings have high infiltration rates, reaching up to 5 air changes per hour. However, the results also indicate an indoor climate moderating effect of more traditional earth construction techniques. Based on these survey findings basic improvements are being suggested. KW - Luftdichtheit KW - Wärmedurchgangszahl KW - Raumklima KW - Monitoring KW - Himalaja KW - Building monitoring KW - Air tightness KW - U-value KW - Indoor climate KW - Himalaya Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170419-31393 UR - http://dx.doi.org/10.1016/j.esd.2017.03.001 SP - 48 EP - 66 ER - TY - JOUR A1 - Schirmer, Ulrike A1 - Osburg, Andrea T1 - A new method for the quantification of adsorbed styrene acrylate copolymer particles on cementitious surfaces: a critical comparative study JF - SN Applied Sciences N2 - The amount of adsorbed styrene acrylate copolymer (SA) particles on cementitious surfaces at the early stage of hydration was quantitatively determined using three different methodological approaches: the depletion method, the visible spectrophotometry (VIS) and the thermo-gravimetry coupled with mass spectrometry (TG–MS). Considering the advantages and disadvantages of each method, including the respectively required sample preparation, the results for four polymer-modified cement pastes, varying in polymer content and cement fineness, were evaluated. To some extent, significant discrepancies in the adsorption degrees were observed. There is a tendency that significantly lower amounts of adsorbed polymers were identified using TG-MS compared to values determined with the depletion method. Spectrophotometrically generated values were ​​lying in between these extremes. This tendency was found for three of the four cement pastes examined and is originated in sample preparation and methodical limitations. The main influencing factor is the falsification of the polymer concentration in the liquid phase during centrifugation. Interactions in the interface between sediment and supernatant are the cause. The newly developed method, using TG–MS for the quantification of SA particles, proved to be suitable for dealing with these revealed issues. Here, instead of the fluid phase, the sediment is examined with regard to the polymer content, on which the influence of centrifugation is considerably lower. KW - Zement KW - Polymere KW - polymer adsorption KW - cement KW - visible spectrophotometry KW - depletion method KW - mass spectrometry Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210804-44729 UR - https://link.springer.com/article/10.1007/s42452-020-03825-5 VL - 2020 IS - Volume 2, article 2061 SP - 1 EP - 11 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Tutal, Adrian A1 - Partschefeld, Stephan A1 - Schneider, Jens A1 - Osburg, Andrea T1 - Effects of Bio-Based Plasticizers, Made From Starch, on the Properties of Fresh and Hardened Metakaolin-Geopolymer Mortar: Basic Investigations JF - Clays and Clay Minerals N2 - Conventional superplasticizers based on polycarboxylate ether (PCE) show an intolerance to clay minerals due to intercalation of their polyethylene glycol (PEG) side chains into the interlayers of the clay mineral. An intolerance to very basic media is also known. This makes PCE an unsuitable choice as a superplasticizer for geopolymers. Bio-based superplasticizers derived from starch showed comparable effects to PCE in a cementitious system. The aim of the present study was to determine if starch superplasticizers (SSPs) could be a suitable additive for geopolymers by carrying out basic investigations with respect to slump, hardening, compressive and flexural strength, shrinkage, and porosity. Four SSPs were synthesized, differing in charge polarity and specific charge density. Two conventional PCE superplasticizers, differing in terms of molecular structure, were also included in this study. The results revealed that SSPs improved the slump of a metakaolin-based geopolymer (MK-geopolymer) mortar while the PCE investigated showed no improvement. The impact of superplasticizers on early hardening (up to 72 h) was negligible. Less linear shrinkage over the course of 56 days was seen for all samples in comparison with the reference. Compressive strengths of SSP specimens tested after 7 and 28 days of curing were comparable to the reference, while PCE led to a decline. The SSPs had a small impact on porosity with a shift to the formation of more gel pores while PCE caused an increase in porosity. Throughout this research, SSPs were identified as promising superplasticizers for MK-geopolymer mortar and concrete. KW - Geopolymere KW - Metakaolin KW - Superplasticizer Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210804-44737 UR - https://link.springer.com/article/10.1007%2Fs42860-020-00084-8 VL - 2020 IS - volume 68, No. 5 SP - 413 EP - 427 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Partschefeld, Stephan A1 - Wiegand, Torben A1 - Bellmann, Frank A1 - Osburg, Andrea T1 - Formation of Geopolymers Using Sodium Silicate Solution and Aluminum Orthophosphate JF - Materials N2 - This paper reports the formation and structure of fast setting geopolymers activated by using three sodium silicate solutions with different modules (1.6, 2.0 and 2.4) and a berlinite-type aluminum orthophosphate. By varying the concentration of the aluminum orthophosphate, different Si/Al-ratios were established (6, 3 and 2). Reaction kinetics of binders were determined by isothermal calorimetric measurements at 20 °C. X-ray diffraction analysis as well as nuclear magnetic resonance (NMR) measurements were performed on binders to determine differences in structure by varying the alkalinity of the sodium silicate solutions and the Si/Al-ratio. The calorimetric results indicated that the higher the alkalinity of the sodium silicate solution, the higher the solubility and degree of conversion of the aluminum orthophosphate. The results of X-ray diffraction and Rietveldt analysis, as well as the NMR measurements, confirmed the assumption of the calorimetric experiments that first the aluminum orthophosphate was dissolved and then a polycondensation to an amorphous aluminosilicate network occurred. The different amounts of amorphous phases formed as a function of the alkalinity of the sodium silicate solution, indicate that tetrahydroxoaluminate species were formed during the dissolution of the aluminum orthophosphate, which reduce the pH value. This led to no further dissolution of the aluminum orthophosphate, which remained unreacted. KW - Geopolymere KW - geopolymer KW - berlinite KW - sodium silicate solution KW - alumosilicate KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210122-43378 UR - https://www.mdpi.com/1996-1944/13/18/4202 VL - 2020 IS - Volume 13, issue 18, article 4202 SP - 1 EP - 16 PB - MDPI CY - Basel ER - TY - JOUR A1 - Cappachione, Clotilde A1 - Partschefeld, Stephan A1 - Osburg, Andrea A1 - Gliubizzi, Rocco A1 - Gaeta, Carmine T1 - Modified Carboxymethylcellulose-Based Scaffolds as New Potential Ecofriendly Superplasticizers with a Retardant Effect for Mortar: From the Synthesis to the Application JF - Materials N2 - This article is focused on the research and development of new cellulose ether derivatives as innovative superplasticizers for mortar systems. Several synthetic strategies have been pursued to obtain new compounds to study their properties on cementitious systems as new bio-based additives. The new water-soluble admixtures were synthesized using a complex carboxymethylcellulose-based backbone that was first hydrolyzed and then sulfo-ethylated in the presence of sodium vinyl sulphonate. Starting with a complex biopolymer that is widely known as a thickening agent was very challenging. Only by varying the hydrolysis times and temperatures of the reactions was achieved the aimed goal. The obtained derivatives showed different molecular weight (Mw) and anionic charges on their backbones. An improvement in shear stress and dynamic viscosity values of CEM II 42.5R cement was observed with the samples obtained with a longer time of higher temperature hydrolysis and sulfo-ethylation. Investigations into the chemical nature of the pore solution, calorimetric studies and adsorption experiments clearly showed the ability of carboxymethyl cellulose superplasticizer (CMC SP) to interact with cement grains and influence hydration processes within a 48-h time window, causing a delay in hydration reactions in the samples. The fluidity of the cementitious matrices was ascertained through slump test and preliminary studies of mechanical and flexural strength of the hardened mortar formulated with the new ecological additives yielded values in terms of mechanical properties. Finally, the computed tomography (CT) images completed the investigation of the pore network structure of hardened specimens, highlighting their promising structure porosity. KW - Mörtel KW - Verflüssigung KW - superplasticizers KW - carboxymethylcellulose KW - mortar KW - OA-Publikationsfonds2021 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210804-44689 UR - https://www.mdpi.com/1996-1944/14/13/3569 VL - 2021 IS - volume 14, issue 13, article 3569 SP - 1 EP - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wiegand, Torben A1 - Osburg, Andrea T1 - Synthesis, Curing and Thermal Behavior of Amine Hardeners from Potentially Renewable Sources JF - Polymers N2 - Research into bio-based epoxy resins has intensified in recent decades. Here, it is of great importance to use raw materials whose use does not compete with food production. In addition, the performance of the newly developed materials should be comparable to that of conventional products. Possible starting materials are lignin degradation products, such as vanillin and syringaldehyde, for which new synthesis routes to the desired products must be found and their properties determined. In this article, the first synthesis of two amine hardeners, starting with vanillin and syringaldehyde, using the Smiles rearrangement reaction is reported. The amine hardeners were mixed with bisphenol A diglycidyl ether, and the curing was compared to isophorone diamine, 4-4′-diaminodiphenyl sulfone, and 4-Aminonbenzylamine by means of differential scanning calorimetry. It was found that the two amines prepared are cold-curing. As TG-MS studies showed, the thermal stability of at least one of the polymers prepared with the potentially bio-based amines is comparable to that of the polymer prepared with isophorone diamine, and similar degradation products are formed during pyrolysis. KW - Epoxide KW - Epoxidharz KW - Polymere KW - epoxy KW - amine hardener KW - curing agent KW - bio-based KW - vanillin KW - OA-Publikationsfonds2023 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230524-63745 UR - https://www.mdpi.com/2073-4360/15/4/990 VL - 2023 IS - volume 15, issue 4, article 990 SP - 1 EP - 12 PB - MDPI CY - Basel ER -