TY - JOUR A1 - Alsaad, Hayder A1 - Schälte, Gereon A1 - Schneeweiß, Mario A1 - Becher, Lia A1 - Pollack, Moritz A1 - Gena, Amayu Wakoya A1 - Schweiker, Marcel A1 - Hartmann, Maria A1 - Voelker, Conrad A1 - Rossaint, Rolf A1 - Irrgang, Matthias T1 - The Spread of Exhaled Air and Aerosols during Physical Exercise JF - Journal of Clinical Medicine N2 - Physical exercise demonstrates a special case of aerosol emission due to its associated elevated breathing rate. This can lead to a faster spread of airborne viruses and respiratory diseases. Therefore, this study investigates cross-infection risk during training. Twelve human subjects exercised on a cycle ergometer under three mask scenarios: no mask, surgical mask, and FFP2 mask. The emitted aerosols were measured in a grey room with a measurement setup equipped with an optical particle sensor. The spread of expired air was qualitatively and quantitatively assessed using schlieren imaging. Moreover, user satisfaction surveys were conducted to evaluate the comfort of wearing face masks during training. The results indicated that both surgical and FFP2 masks significantly reduced particles emission with a reduction efficiency of 87.1% and 91.3% of all particle sizes, respectively. However, compared to surgical masks, FFP2 masks provided a nearly tenfold greater reduction of the particle size range with long residence time in the air (0.3–0.5 μm). Furthermore, the investigated masks reduced exhalation spreading distances to less than 0.15 m and 0.1 m in the case of the surgical mask and FFP2 mask, respectively. User satisfaction solely differed with respect to perceived dyspnea between no mask and FFP2 mask conditions. KW - Sport KW - Training KW - Fahrradergometer KW - sport KW - training KW - cycle ergometer KW - schlieren imaging KW - particles concentration KW - OA-Publikationsfonds2023 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230208-49262 UR - https://www.mdpi.com/2077-0383/12/4/1300 VL - 2023 IS - Volume 12, issue 4, article 1300 PB - Basel CY - MDPI ER - TY - JOUR A1 - Vogel, Albert A1 - Arnold, Jörg A1 - Voelker, Conrad A1 - Kornadt, Oliver T1 - Data for sound pressure level prediction in lightweight constructions caused by structure-borne sound sources and their uncertainties JF - Data in Brief N2 - When predicting sound pressure levels induced by structure-borne sound sources and describing the sound propagation path through the building structure as exactly as possible, it is necessary to characterize the vibration behavior of the structure-borne sound sources. In this investigation, the characterization of structure-borne sound sources was performed using the two-stage method (TSM) described in EN 15657. Four different structure-borne sound sources were characterized and subsequently installed in a lightweight test stand. The resulting sound pressure levels in an adjacent receiving room were measured. In the second step, sound pressure levels were predicted according to EN 12354-5 based on the parameters of the structure-borne sound sources. Subsequently, the predicted and the measured sound pressure levels were compared to obtain reliable statements on the achievable accuracy when using source quantities determined by TSM with this prediction method. KW - Bauakustik KW - Körperschall KW - building acoustics KW - structure-borne sound KW - sound pressure level prediction KW - structure-borne sound sources KW - OA-Publikationsfonds2023 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230719-64114 UR - https://www.sciencedirect.com/science/article/pii/S2352340923004110?via%3Dihub VL - 2023 IS - Volume 48, June 2023, article 109292 SP - 1 EP - 16 PB - Elsevier CY - Amsterdam ER -