TY - THES A1 - Zacharias, Christin T1 - Numerical Simulation Models for Thermoelastic Damping Effects N2 - Finite Element Simulations of dynamically excited structures are mainly influenced by the mass, stiffness, and damping properties of the system, as well as external loads. The prediction quality of dynamic simulations of vibration-sensitive components depends significantly on the use of appropriate damping models. Damping phenomena have a decisive influence on the vibration amplitude and the frequencies of the vibrating structure. However, developing realistic damping models is challenging due to the multiple sources that cause energy dissipation, such as material damping, different types of friction, or various interactions with the environment. This thesis focuses on thermoelastic damping, which is the main cause of material damping in homogeneous materials. The effect is caused by temperature changes due to mechanical strains. In vibrating structures, temperature gradients arise in adjacent tension and compression areas. Depending on the vibration frequency, they result in heat flows, leading to increased entropy and the irreversible transformation of mechanical energy into thermal energy. The central objective of this thesis is the development of efficient simulation methods to incorporate thermoelastic damping in finite element analyses based on modal superposition. The thermoelastic loss factor is derived from the structure's mechanical mode shapes and eigenfrequencies. In subsequent analyses that are performed in the time and frequency domain, it is applied as modal damping. Two approaches are developed to determine the thermoelastic loss in thin-walled plate structures, as well as three-dimensional solid structures. The realistic representation of the dissipation effects is verified by comparing the simulation results with experimentally determined data. Therefore, an experimental setup is developed to measure material damping, excluding other sources of energy dissipation. The three-dimensional solid approach is based on the determination of the generated entropy and therefore the generated heat per vibration cycle, which is a measure for thermoelastic loss in relation to the total strain energy. For thin plate structures, the amount of bending energy in a modal deformation is calculated and summarized in the so-called Modal Bending Factor (MBF). The highest amount of thermoelastic loss occurs in the state of pure bending. Therefore, the MBF enables a quantitative classification of the mode shapes concerning the thermoelastic damping potential. The results of the developed simulations are in good agreement with the experimental results and are appropriate to predict thermoelastic loss factors. Both approaches are based on modal superposition with the advantage of a high computational efficiency. Overall, the modeling of thermoelastic damping represents an important component in a comprehensive damping model, which is necessary to perform realistic simulations of vibration processes. N2 - Die Finite-Elemente Simulation von dynamisch angeregten Strukturen wird im Wesentlich durch die Steifigkeits-, Massen- und Dämpfungseigenschaften des Systems sowie durch die äußere Belastung bestimmt. Die Vorhersagequalität von dynamischen Simulationen schwingungsanfälliger Bauteile hängt wesentlich von der Verwendung geeigneter Dämpfungsmodelle ab. Dämpfungsphänomene haben einen wesentlichen Einfluss auf die Schwingungsamplitude, die Frequenz und teilweise sogar die Existenz von Vibrationen. Allerdings ist die Entwicklung von realitätsnahen Dämpfungsmodellen oft schwierig, da eine Vielzahl von physikalischen Effekten zur Energiedissipation während eines Schwingungsvorgangs führt. Beispiele hierfür sind die Materialdämpfung, verschiedene Formen der Reibung sowie vielfältige Wechselwirkungen mit dem umgebenden Medium. Diese Dissertation befasst sich mit thermoelastischer Dämpfung, die in homogenen Materialien die dominante Ursache der Materialdämpfung darstellt. Der thermoelastische Effekt wird ausgelöst durch eine Temperaturänderung aufgrund mechanischer Spannungen. In der schwingenden Struktur entstehen während der Deformation Temperaturgradienten zwischen benachbarten Regionen unter Zug- und Druckbelastung. In Abhängigkeit von der Vibrationsfrequenz führen diese zu Wärmeströmen und irreversibler Umwandlung mechanischer in thermische Energie. Die Zielstellung dieser Arbeit besteht in der Entwicklung recheneffizienter Simulationsmethoden, um thermoelastische Dämpfung in zeitabhängigen Finite-Elemente Analysen, die auf modaler Superposition beruhen, zu integrieren. Der thermoelastische Verlustfaktor wird auf der Grundlage der mechanischen Eigenformen und -frequenzen bestimmt. In nachfolgenden Analysen im Zeit- und Frequenzbereich wird er als modaler Dämpfungsgrad verwendet. Zwei Ansätze werden entwickelt, um den thermoelastischen Verlustfaktor in dünn-wandigen Plattenstrukturen, sowie in dreidimensionalen Volumenbauteilen zu simulieren. Die realitätsnahe Vorhersage der Energiedissipation wird durch die Verifizierung an experimentellen Daten bestätigt. Dafür wird ein Versuchsaufbau entwickelt, der eine Messung von Materialdämpfung unter Ausschluss anderer Dissipationsquellen ermöglicht. Für den Fall der Volumenbauteile wird ein Ansatz verwendet, der auf der Berechnung der Entropieänderung und damit der erzeugte Wärmeenergie während eines Schwingungszyklus beruht. Im Verhältnis zur Formänderungsenergie ist dies ein Maß für die thermoelastische Dämpfung. Für dünne Plattenstrukturen wird der Anteil an Biegeenergie in der Eigenform bestimmt und im sogenannten modalen Biegefaktor (MBF) zusammengefasst. Der maximale Grad an thermoelastischer Dämpfung kann im Zustand reiner Biegung auftreten, sodass der MBF eine quantitative Klassifikation der Eigenformen hinsichtlich ihres thermoelastischen Dämpfungspotentials zulässt. Die Ergebnisse der entwickelten Simulationsmethoden stimmen sehr gut mit den experimentellen Daten überein und sind geeignet, um thermoelastische Dämpfungsgrade vorherzusagen. Beide Ansätze basieren auf modaler Superposition und ermöglichen damit zeitabhängige Simulationen mit einer hohen Recheneffizienz. Insgesamt stellt die Modellierung der thermoelastischen Dämpfung einen Baustein in einem umfassenden Dämpfungsmodell dar, welches zur realitätsnahen Simulation von Schwingungsvorgängen notwendig ist. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2022,8 KW - Werkstoffdämpfung KW - Finite-Elemente-Methode KW - Strukturdynamik KW - Thermoelastic damping KW - modal damping KW - decay experiments KW - energy dissipation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221116-47352 ER - TY - JOUR A1 - Ansari, Meisam A1 - Zacharias, Christin A1 - Könke, Carsten T1 - Metaconcrete: An Experimental Study on the Impact of the Core-Coating Inclusions on Mechanical Vibration JF - materials N2 - Resonance vibration of structures is an unpleasant incident that can be conventionally avoided by using a Tuned Mass Damper (TMD). The scope of this paper contains the utilization of engineered inclusions in concrete as damping aggregates to suppress resonance vibration similar to a TMD. The inclusions are composed of a stainless-steel core with a spherical shape coated with silicone. This configuration has been the subject of several studies and it is best known as Metaconcrete. This paper presents the procedure of a free vibration test conducted with two small-scaled concrete beams. The beams exhibited a higher damping ratio after the core-coating element was secured to them. Subsequently, two meso-models of small-scaled beams were created: one representing conventional concrete and the other representing concrete with the core-coating inclusions. The frequency response curves of the models were obtained. The change in the response peak verified the ability of the inclusions to suppress the resonance vibration. This study concludes that the core-coating inclusions can be utilized in concrete as damping aggregates. KW - Beton KW - Schwingungsdämpfung KW - metaconcrete KW - damping aggregate KW - vibration absorber Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230315-49370 UR - https://www.mdpi.com/1996-1944/16/5/1836 VL - 2023 IS - Volume 16, Issue 5, article 1836 SP - 1 EP - 18 PB - MDPI CY - Basel ER -