TY - THES A1 - Ghasemi, Hamid T1 - Stochastic optimization of fiber reinforced composites considering uncertainties N2 - Briefly, the two basic questions that this research is supposed to answer are: 1. Howmuch fiber is needed and how fibers should be distributed through a fiber reinforced composite (FRC) structure in order to obtain the optimal and reliable structural response? 2. How do uncertainties influence the optimization results and reliability of the structure? Giving answer to the above questions a double stage sequential optimization algorithm for finding the optimal content of short fiber reinforcements and their distribution in the composite structure, considering uncertain design parameters, is presented. In the first stage, the optimal amount of short fibers in a FRC structure with uniformly distributed fibers is conducted in the framework of a Reliability Based Design Optimization (RBDO) problem. Presented model considers material, structural and modeling uncertainties. In the second stage, the fiber distribution optimization (with the aim to further increase in structural reliability) is performed by defining a fiber distribution function through a Non-Uniform Rational BSpline (NURBS) surface. The advantages of using the NURBS surface as a fiber distribution function include: using the same data set for the optimization and analysis; high convergence rate due to the smoothness of the NURBS; mesh independency of the optimal layout; no need for any post processing technique and its non-heuristic nature. The output of stage 1 (the optimal fiber content for homogeneously distributed fibers) is considered as the input of stage 2. The output of stage 2 is the Reliability Index (b ) of the structure with the optimal fiber content and distribution. First order reliability method (in order to approximate the limit state function) as well as different material models including Rule of Mixtures, Mori-Tanaka, energy-based approach and stochastic multi-scales are implemented in different examples. The proposed combined model is able to capture the role of available uncertainties in FRC structures through a computationally efficient algorithm using all sequential, NURBS and sensitivity based techniques. The methodology is successfully implemented for interfacial shear stress optimization in sandwich beams and also for optimization of the internal cooling channels in a ceramic matrix composite. Finally, after some changes and modifications by combining Isogeometric Analysis, level set and point wise density mapping techniques, the computational framework is extended for topology optimization of piezoelectric / flexoelectric materials. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2016,1 KW - Optimization KW - Fiber Reinforced Composite KW - Finite Element Method KW - Isogeometric Analysis KW - Flexoelectricity KW - Finite-Elemente-Methode KW - Optimierung Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20161117-27042 ER - TY - THES A1 - Schemmann, Christoph T1 - Optimierung von radialen Verdichterlaufrädern unter Berücksichtigung empirischer und analytischer Vorinformationen mittels eines mehrstufigen Sampling Verfahrens T1 - Optimization of Centrifugal Compressor Impellers by a Multi-fidelity Sampling Method Taking Analytical and Empirical Information into Account N2 - Turbomachinery plays an important role in many cases of energy generation or conversion. Therefore, turbomachinery is a promising approaching point for optimization in order to increase the efficiency of energy use. In recent years, the use of automated optimization strategies in combination with numerical simulation has become increasingly popular in many fields of engineering. The complex interactions between fluid and solid mechanics encountered in turbomachines on the one hand and the high computational expense needed to calculate the performance on the other hand, have, however, prevented a widespread use of these techniques in this field of engineering. The objective of this work was the development of a strategy for efficient metamodel based optimization of centrifugal compressor impellers. In this context, the main focus is the reduction of the required numerical expense. The central idea followed in this research was the incorporation of preliminary information acquired from low-fidelity computation methods and empirical correlations into the sampling process to identify promising regions of the parameter space. This information was then used to concentrate the numerically expensive high-fidelity computations of the fluid dynamic and structure mechanic performance of the impeller in these regions while still maintaining a good coverage of the whole parameter space. The development of the optimization strategy can be divided into three main tasks. Firstly, the available preliminary information had to be researched and rated. This research identified loss models based on one dimensional flow physics and empirical correlations as the best suited method to predict the aerodynamic performance. The loss models were calibrated using available performance data to obtain a high prediction quality. As no sufficiently exact models for the prediction of the mechanical loading of the impellercould be identified, a metamodel based on finite element computations was chosen for this estimation. The second task was the development of a sampling method which concentrates samples in regions of the parameter space where high quality designs are predicted by the preliminary information while maintaining a good overall coverage. As available methods like rejection sampling or Markov-chain Monte-Carlo methods did not meet the requirements in terms of sample distribution and input correlation, a new multi-fidelity sampling method called “Filtered Sampling“has been developed. The last task was the development of an automated computational workflow. This workflow encompasses geometry parametrization, geometry generation, grid generation and computation of the aerodynamic performance and the structure mechanic loading. Special emphasis was put into the development of a geometry parametrization strategy based on fluid mechanic considerations to prevent the generation of physically inexpedient designs. Finally, the optimization strategy, which utilizes the previously developed tools, was successfully employed to carry out three optimization tasks. The efficiency of the method was proven by the first and second testcase where an existing compressor design was optimized by the presented method. The results were comparable to optimizations which did not take preliminary information into account, while the required computational expense cloud be halved. In the third testcase, the method was applied to generate a new impeller design. In contrast to the previous examples, this optimization featuredlargervariationsoftheimpellerdesigns. Therefore, theapplicability of the method to parameter spaces with significantly varying designs could be proven, too. N2 - Turbomaschinen sind eine entscheidende Komponente in vielen Energiewandlungs- oder Energieerzeugungsprozessen und daher als vielversprechender Ansatzpunkt für eine Effizienzsteigerung der Energie-und Ressourcennutzung anzusehen. Im Laufe des letzten Jahrzehnts haben automatisierte Optimierungsmethoden in Verbindung mit numerischer Simulation zunehmend breitere Verwendung als Mittel zur Effizienzsteigerung in vielen Bereichen der Ingenieurwissenschaften gefunden. Allerdings standen die komplexen Interaktionen zwischen Strömungs- und Strukturmechanik sowie der hohe nummerische Aufwand einem weitverbreiteten Einsatz dieser Methoden im Turbomaschinenbereich bisher entgegen. Das Ziel dieser Forschungsaktivität ist die Entwicklung einer effizienten Strategie zur metamodellbasierten Optimierung von radialen Verdichterlaufrädern. Dabei liegt der Schwerpunkt auf einer Reduktion des benötigten numerischen Aufwandes. Der in diesem Vorhaben gewählte Ansatz ist das Einbeziehen analytischer und empirischer Vorinformationen (“lowfidelity“) in den Sampling Prozess, um vielversprechende Bereiche des Parameterraumes zu identifizieren. Diese Informationen werden genutzt um die aufwendigen numerischen Berechnungen (“high-fidelity“) des strömungs- und strukturmechanischen Verhaltens der Laufräder in diesen Bereichen zu konzentrieren, während gleichzeitig eine ausreichende Abdeckung des gesamten Parameterraumes sichergestellt wird. Die Entwicklung der Optimierungsstrategie ist in drei zentrale Arbeitspakete aufgeteilt. In einem ersten Schritt werden die verfügbaren empirischen und analytischen Methoden gesichtet und bewertet. In dieser Recherche sind Verlustmodelle basierend auf eindimensionaler Strömungsmechanik und empirischen Korrelationen als bestgeeignete Methode zur Vorhersage des aerodynamischen Verhaltens der Verdichter identifiziert worden. Um eine hohe Vorhersagegüte sicherzustellen, sind diese Modelle anhand verfügbarer Leistungsdaten kalibriert worden. Da zur Vorhersage der mechanischen Belastung des Laufrades keine brauchbaren analytischen oder empirischen Modelle ermittelt werden konnten, ist hier ein Metamodel basierend auf Finite-Element Berechnungen gewählt worden. Das zweite Arbeitspaket beinhaltet die Entwicklung der angepassten Samplingmethode, welche Samples in Bereichen des Parameterraumes konzentriert, die auf Basis der Vorinformationen als vielversrechend angesehen werden können. Gleichzeitig müssen eine gleichmäßige Abdeckung des gesamten Parameterraumes und ein niedriges Niveau an Eingangskorrelationen sichergestellt sein. Da etablierte Methoden wie Markov-Ketten-Monte-Carlo-Methoden oder die Verwerfungsmethode diese Voraussetzungen nicht erfüllen, ist ein neues, mehrstufiges Samplingverfahren (“Filtered Sampling“) entwickelt worden. Das letzte Arbeitspaket umfasst die Entwicklung eines automatisiertenSimulations-Workflows. Dieser Workflow umfasst Geometrieparametrisierung, Geometrieerzeugung, Netzerzeugung sowie die Berechnung des aerodynamischen Betriebsverhaltens und der strukturmechanischen Belastung. Dabei liegt ein Schwerpunkt auf der Entwicklung eines Parametrisierungskonzeptes, welches auf strömungsmechanischen Zusammenhängen beruht, um so physikalisch nicht zielführende Parameterkombinationen zu vermeiden. Abschließend ist die auf den zuvor entwickelten Werkzeugen aufbauende Optimierungsstrategie erfolgreich eingesetzt worden, um drei Optimierungsfragestellungen zu bearbeiten. Im ersten und zweiten Testcase sind bestehende Verdichterlaufräder mit der vorgestellten Methode optimiert worden. Die erzielten Optimierungsergebnisse sind von ähnlicher Güte wie die solcher Optimierungen, die keine Vorinformationen berücksichtigen, allerdingswirdnurdieHälfteannumerischemAufwandbenötigt. IneinemdrittenTestcase ist die Methode eingesetzt worden, um ein neues Laufraddesign zu erzeugen. Im Gegensatz zu den vorherigen Beispielen werden im Rahmen dieser Optimierung stark unterschiedliche Designs untersucht. Dadurch kann an diesem dritten Beispiel aufgezeigt werden, dass die Methode auch für Parameterräume mit stakt variierenden Designs funktioniert. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2019,3 KW - Simulation KW - Maschinenbau KW - Optimierung KW - Strömungsmechanik KW - Strukturmechanik Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190910-39748 ER - TY - THES A1 - Weitze, Laura Katharina T1 - Erweiterte Prozessbewertung von Biogasanlagen unter Berücksichtigung organoleptischer Parameter und Erfahrungswissen N2 - Landwirtschaftliche Biogasanlagen leisten mit ca. 9.300 Anlagen und einem Anteil von 5,3% an der Stromerzeugung, einen Beitrag zur Erzeugung Erneuer-barer Energien in Deutschland. Die Optimierung dieser Anlagen fördert die nachhaltige Bereitstellung von Strom, Wärme und BioErdgas. Das Ergebnis dieser Forschungsarbeit ist die Entwicklung eines mehrmethodi-schen Bewertungsansatzes zur Beschreibung der Qualität der Eingangs-substrate als Teil einer ganzheitlichen Prozessoptimierung. Dies gelingt durch die kombinierte Nutzung klassischer Analysesätze, der Nutzung organolepti-scher Parameter – der humansensorischen Sinnenprüfung – und der Integration von prozess- und substratspezifischem Erfahrungswissen. Anhand von halbtechnischen Versuchen werden Korrelationen und Kausalitäten zwi-schen chemisch-physikalischen, biologischen, organoleptischen und erfahrungsbezogenen Parametern erforscht. Die Entwicklung einer Fallbasis mit Hilfe des Fallbasierten Schließens, einer Form Künstlicher Intelligenz, zeigt das Entwicklungs- und Integrationspotenzial der Automatisierung auf, insbesondere auch im Hinblick auf neue Ansätze z.B. Industrie 4.0. Erste Lösungen zur Bewältigung der identifizierten Herausforderungen der mehrmethodischen Prozessbewertung werden vorgestellt. Abschließend wird ein Ausblick auf den weiteren Forschungsbedarf gegeben und die Übertragbarkeit des mehrmethodischen Bewertungsansatzes auf andere Anwendungsfelder z.B. Bioabfallbehandlung, Kläranlagen angeregt. N2 - Agricultural biogas plants significantly contribute to the generation of renewable energies in Germany. Approx. 9,300 facilities account 5.3% of the total generated electricity in Germany. Optimization of these biogas plants will undoubtably promote the sustainable provision of electricity, heat and natural gas. This research study developed a multi-methodical assessment approach to de-scribe the quality of input substrates as part of a holistic process optimization. This is achieved by combination of conventional analysis, use of organoleptic parameters, integration of process- as well as substrate-specific experient ba-sed knowledge. Correlations and causalities between chemical-physical, biological, organoleptic and experiential parameters are explored. These inves-tigations based on semi-technical experiments. Using case-based reasoning, a form of artificial intelligence, demonstrates the potential for development and integration of automation. Solving approaches to overcome the challenges of multi-methodical process assessment are presented. Finally, an outlook on further research needs is given. Furthermore, the trans-ferability of the multi-methodical assessment approach to other fields of application like bio-waste treatment or sewage treatment plants, is incited. KW - Biogasanlage KW - Erfahrungswissen KW - Maissilage KW - Optimierung KW - Biogas KW - Organoleptik Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190129-38499 ER - TY - THES A1 - Hartmann, Veronika T1 - Methoden zur Quantifizierung und Optimierung der Robustheit von Bauablaufplänen N2 - Bauablaufplänen kommt bei der Realisierung von Bauprojekten eine zentrale Rolle zu. Sie dienen der Koordination von Schnittstellen und bilden für die am Projekt Beteiligten die Grundlage für ihre individuelle Planung. Eine verlässliche Terminplanung ist daher von großer Bedeutung, tatsächlich sind aber gerade Bauablaufpläne für ihre Unzuverlässigkeit bekannt. Aufgrund der langen Vorlaufzeiten bei der Planung von Bauprojekten sind zum Zeitpunkt der Planung viele Informationen nur als Schätzwerte bekannt. Auf der Grundlage dieser geschätzten und damit mit Unsicherheiten behafteten Daten werden im Bauwesen deterministische Terminpläne erstellt. Kommt es während der Realisierung zu Diskrepanzen zwischen Schätzungen und Realität, erfordert dies die Anpassung der Pläne. Aufgrund zahlreicher Abhängigkeiten zwischen den geplanten Aktivitäten können einzelne Planänderungen vielfältige weitere Änderungen und Anpassungen nach sich ziehen und damit einen reibungslosen Projektablauf gefährden. In dieser Arbeit wird ein Vorgehen entwickelt, welches Bauablaufpläne erzeugt, die im Rahmen der durch das Projekt definierten Abhängigkeiten und Randbedingungen in der Lage sind, Änderungen möglichst gut zu absorbieren. Solche Pläne, die bei auftretenden Änderungen vergleichsweise geringe Anpassungen des Terminplans erfordern, werden hier als robust bezeichnet. Ausgehend von Verfahren der Projektplanung und Methoden zur Berücksichtigung von Unsicherheiten werden deterministische Terminpläne bezüglich ihres Verhaltens bei eintretenden Änderungen betrachtet. Hierfür werden zunächst mögliche Unsicherheiten als Ursachen für Änderungen benannt und mathematisch abgebildet. Damit kann das Verhalten von Abläufen für mögliche Änderungen betrachtet werden, indem die durch Änderungen erzwungenen angepassten Terminpläne simuliert werden. Für diese Monte-Carlo-Simulationen der angepassten Terminpläne wird sichergestellt, dass die angepassten Terminpläne logische Weiterentwicklungen des deterministischen Terminplans darstellen. Auf der Grundlage dieser Untersuchungen wird ein stochastisches Maß zur Quantifizierung der Robustheit erarbeitet, welches die Fähigkeit eines Planes, Änderungen zu absorbieren, beschreibt. Damit ist es möglich, Terminpläne bezüglich ihrer Robustheit zu vergleichen. Das entwickelte Verfahren zur Quantifizierung der Robustheit wird in einem Optimierungsverfahren auf Basis Genetischer Algorithmen angewendet, um gezielt robuste Terminpläne zu erzeugen. An Beispielen werden die Methoden demonstriert und ihre Wirksamkeit nachgewiesen. N2 - Construction schedules are of significant importance in the execution of building projects. As basis for individual project planning of all project stakeholders, construction schedules support the coordination of interfaces. While reliable scheduling is of particular relevance for the entire project, construction schedules are known to be notoriously unreliable. Because of long project preparations in civil engineering, information necessary for scheduling is often estimated at the time of drafting construction plans. Therefore uncertain data form the basis of deterministic schedules prepared to guide building executions. When discrepancies between assumptions and reality occur during building processes, schedules need to be adjusted. Due to many interdependencies between construction processes, certain schedule changes may lead to significant further changes and adjustments and may jeopardise a smooth project execution. This thesis develops a method to generate construction schedules that can absorb project changes while considering the interdependencies and boundary conditions imposed by the project specifics. Schedules that require comparatively small adjustments in case of project changes are referred to as robust. Based on methods for project scheduling and for representing process uncertainties, deterministic schedules are studied with respect to their behaviour under changes. Reasons for uncertainties are discussed and transferred into a mathematical description of process changes. Defining process changes mathematically allows analysing schedule adjustments arising from project changes by generating adjusted schedules in Monte Carlo simulations. In this thesis, efforts are made to ensure that schedules created by simulation are logical advancements of the respective original, deterministic schedules. Interpretations of the results of the stochastic simulations serve as basis for quantifying schedule robustness to describe the ability of a schedule to absorb changes. The definition of a robustness measure allows the comparison of schedules in terms of their robustness. The method developed herin is then employed as part of an optimisation procedure based on genetic algorithms to systematically generate robust schedules. To demonstrate their effectiveness, the methods are validated using practical examples. KW - Bauablaufplanung KW - Bauinformatik KW - Optimierung KW - Robustheit Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220204-45798 ER -