TY - JOUR A1 - Vu-Bac, N. A1 - Rafiee, Roham A1 - Zhuang, Xiaoying A1 - Lahmer, Tom A1 - Rabczuk, Timon T1 - Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters JF - Composites Part B: Engineering N2 - Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2015 SP - 446 EP - 464 ER - TY - JOUR A1 - Zhao, Jiyun A1 - Lu, Lixin A1 - Rabczuk, Timon T1 - The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers JF - Computational Materials Science N2 - The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 567 EP - 572 ER - TY - JOUR A1 - Ben, S. A1 - Zhao, Jun-Hua A1 - Zhang, Yancheng A1 - Rabczuk, Timon T1 - The interface strength and debonding for composite structures: review and recent developments JF - Composite Structures N2 - The interface strength and debonding for composite structures: review and recent developments KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 ER - TY - JOUR A1 - Ghorashi, Seyed Shahram A1 - Valizadeh, Navid A1 - Mohammadi, S. A1 - Rabczuk, Timon T1 - T-spline based XIGA for Fracture Analysis of Orthotropic Media JF - Computers & Structures N2 - T-spline based XIGA for Fracture Analysis of Orthotropic Media KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 138 EP - 146 ER - TY - JOUR A1 - Hamdia, Khader A1 - Lahmer, Tom A1 - Nguyen-Thoi, T. A1 - Rabczuk, Timon T1 - Predicting The Fracture Toughness of PNCs: A Stochastic Approach Based on ANN and ANFIS JF - Computational Materials Science N2 - Predicting The Fracture Toughness of PNCs: A Stochastic Approach Based on ANN and ANFIS KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2015 SP - 304 EP - 313 ER - TY - JOUR A1 - Ghasemi, Hamid A1 - Brighenti, Roberto A1 - Zhuang, Xiaoying A1 - Muthu, Jacob A1 - Rabczuk, Timon T1 - Optimum fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach JF - Structural and Multidisciplinary Optimization N2 - Optimum _ber content and distribution in _ber-reinforced solids using a reliability and NURBS based sequential optimization approach KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 99 EP - 112 ER - TY - JOUR A1 - Arash, Behrouz A1 - Rabczuk, Timon A1 - Jiang, Jin-Wu T1 - Nanoresonators and their applications: a state of the art review JF - Applied Physics Reviews N2 - Nanoresonators and their applications: a state of the art review KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 ER - TY - JOUR A1 - Mortazavi, Bohayra A1 - Rabczuk, Timon T1 - Multiscale modeling of heat conduction in graphene laminates JF - Carbon N2 - Multiscale modeling of heat conduction in graphene laminates KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 1 EP - 7 ER - TY - JOUR A1 - Ilyani Akmar, A.B. A1 - Kramer, O. A1 - Rabczuk, Timon T1 - Multi-objective evolutionary optimization of sandwich structures: An evaluation by elitist non-dominated sorting evolution strategy JF - American Journal of Engineering and Applied Sciences N2 - In this study, an application of evolutionary multi-objective optimization algorithms on the optimization of sandwich structures is presented. The solution strategy is known as Elitist Non-Dominated Sorting Evolution Strategy (ENSES) wherein Evolution Strategies (ES) as Evolutionary Algorithm (EA) in the elitist Non-dominated Sorting Genetic algorithm (NSGA-II) procedure. Evolutionary algorithm seems a compatible approach to resolve multi-objective optimization problems because it is inspired by natural evolution, which closely linked to Artificial Intelligence (AI) techniques and elitism has shown an important factor for improving evolutionary multi-objective search. In order to evaluate the notion of performance by ENSES, the well-known study case of sandwich structures are reconsidered. For Case 1, the goals of the multi-objective optimization are minimization of the deflection and the weight of the sandwich structures. The length, the core and skin thicknesses are the design variables of Case 1. For Case 2, the objective functions are the fabrication cost, the beam weight and the end deflection of the sandwich structures. There are four design variables i.e., the weld height, the weld length, the beam depth and the beam width in Case 2. Numerical results are presented in terms of Paretooptimal solutions for both evaluated cases. KW - Optimierung KW - Stahlbau KW - Multi-objective Evolutionary Optimization, Elitist Non- Dominated Sorting Evolution Strategy (ENSES), Sandwich Structure, Pareto-Optimal Solutions, Evolutionary Algorithm Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170418-31402 SP - 185 EP - 201 ER - TY - JOUR A1 - Mortazavi, Bohayra A1 - Pereira, Luiz Felipe C. A1 - Jiang, Jin-Wu A1 - Rabczuk, Timon T1 - Modelling heat conduction in polycrystalline hexagonal boron-nitride films JF - Scientific Reports N2 - We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. KW - Wärmeleitfähigkeit KW - Bornitrid KW - Finite-Elemente-Methode Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170425-31534 ER -