TY - JOUR A1 - Ansari, Meisam A1 - Tartaglione, Fabiola A1 - Könke, Carsten T1 - Experimental Validation of Dynamic Response of Small-Scale Metaconcrete Beams at Resonance Vibration JF - materials N2 - Structures and their components experience substantially large vibration amplitudes at resonance, which can cause their failure. The scope of this study is the utilization of silicone-coated steel balls in concrete as damping aggregates to suppress the resonance vibration. The heavy steel cores oscillate with a frequency close to the resonance frequency of the structure. Due to the phase difference between the vibrations of the cores and the structure, the cores counteract the vibration of the structure. The core-coating inclusions are randomly distributed in concrete similar to standard aggregates. This mixture is referred to as metaconcrete. The main goal of this work is to validate the ability of the inclusions to suppress mechanical vibration through laboratory experiments. For this purpose, two small-scale metaconcrete beams were cast and tested. In a free vibration test, the metaconcrete beams exhibited a larger damping ratio compared to a similar beam cast from conventional concrete. The vibration amplitudes of the metaconcrete beams at resonance were measured with a frequency sweep test. In comparison with the conventional concrete beam, both metaconcrete beams demonstrated smaller vibration amplitudes. Both experiments verified an improvement in the dynamic response of the metaconcrete beams at resonance vibration. KW - Beton KW - metaconcrete KW - Schwingungsdämpfung KW - damping aggregate KW - vibration absorber KW - free vibration test KW - frequency sweep test Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230818-64154 UR - https://www.mdpi.com/1996-1944/16/14/5029 VL - 2023 IS - volume 16, issue 14, article 5029 SP - 1 EP - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Ansari, Meisam A1 - Zacharias, Christin A1 - Könke, Carsten T1 - Metaconcrete: An Experimental Study on the Impact of the Core-Coating Inclusions on Mechanical Vibration JF - materials N2 - Resonance vibration of structures is an unpleasant incident that can be conventionally avoided by using a Tuned Mass Damper (TMD). The scope of this paper contains the utilization of engineered inclusions in concrete as damping aggregates to suppress resonance vibration similar to a TMD. The inclusions are composed of a stainless-steel core with a spherical shape coated with silicone. This configuration has been the subject of several studies and it is best known as Metaconcrete. This paper presents the procedure of a free vibration test conducted with two small-scaled concrete beams. The beams exhibited a higher damping ratio after the core-coating element was secured to them. Subsequently, two meso-models of small-scaled beams were created: one representing conventional concrete and the other representing concrete with the core-coating inclusions. The frequency response curves of the models were obtained. The change in the response peak verified the ability of the inclusions to suppress the resonance vibration. This study concludes that the core-coating inclusions can be utilized in concrete as damping aggregates. KW - Beton KW - Schwingungsdämpfung KW - metaconcrete KW - damping aggregate KW - vibration absorber Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230315-49370 UR - https://www.mdpi.com/1996-1944/16/5/1836 VL - 2023 IS - Volume 16, Issue 5, article 1836 SP - 1 EP - 18 PB - MDPI CY - Basel ER - TY - INPR A1 - Radmard Rahmani, Hamid A1 - Könke, Carsten T1 - Passive Control of Tall Buildings Using Distributed Multiple Tuned Mass Dampers N2 - The vibration control of the tall building during earthquake excitations is a challenging task due to their complex seismic behavior. This paper investigates the optimum placement and properties of the Tuned Mass Dampers (TMDs) in tall buildings, which are employed to control the vibrations during earthquakes. An algorithm was developed to spend a limited mass either in a single TMD or in multiple TMDs and distribute them optimally over the height of the building. The Non-dominated Sorting Genetic Algorithm (NSGA – II) method was improved by adding multi-variant genetic operators and utilized to simultaneously study the optimum design parameters of the TMDs and the optimum placement. The results showed that under earthquake excitations with noticeable amplitude in higher modes, distributing TMDs over the height of the building is more effective in mitigating the vibrations compared to the use of a single TMD system. From the optimization, it was observed that the locations of the TMDs were related to the stories corresponding to the maximum modal displacements in the lower modes and the stories corresponding to the maximum modal displacements in the modes which were highly activated by the earthquake excitations. It was also noted that the frequency content of the earthquake has significant influence on the optimum location of the TMDs. KW - Schwingungsdämpfer KW - Hochbau KW - tall buildings KW - passive control KW - genetic algorithm KW - tuned mass dampers Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190311-38597 UR - https://www.researchgate.net/publication/330508976_Seismic_Control_of_Tall_Buildings_Using_Distributed_Multiple_Tuned_Mass_Dampers ER - TY - JOUR A1 - Lahmer, Tom A1 - Könke, Carsten A1 - Bettzieche, Volker T1 - Optimal positioning of sensors for the monitoring of water dams JF - WASSERWIRTSCHAFT N2 - Optimal positioning of sensors for the monitoring of water dams KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2010 SP - 16 EP - 19 ER - TY - JOUR A1 - Lahmer, Tom A1 - Könke, Carsten A1 - Bettzieche, Volker T1 - Optimale Positionierung von Messeinrichtungen an Staumauern zur Bauwerksüberwachung JF - WASSERWIRTSCHAFT N2 - Optimale Positionierung von Messeinrichtungen an Staumauern zur Bauwerksüberwachung KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2010 SP - 16 EP - 16 ER - TY - JOUR A1 - Lahmer, Tom A1 - Nguyen-Tuan, Long A1 - Könke, Carsten A1 - Bettzieche, Volker T1 - Thermo-hydro-mechanische 3-D-Simulation von Staumauern‐Modellierung und Validierung JF - WASSERWIRTSCHAFT N2 - Thermo-hydro-mechanische 3-D-Simulation von Staumauern‐Modellierung und Validierung KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 SP - 27 EP - 30 ER - TY - JOUR A1 - Nguyen-Tuan, Long A1 - Könke, Carsten A1 - Bettzieche, Volker A1 - Lahmer, Tom T1 - Numerical modeling and validation for 3D coupled-nonlinear thermo-hydro-mechanical problems in masonry dams JF - Computers & Structures N2 - Numerical modeling and validation for 3D coupled-nonlinear thermo-hydro-mechanical problems in masonry dams KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2017 SP - 143 EP - 154 ER - TY - JOUR A1 - Bruhin, R. A1 - Stock, U.A. A1 - Drücker, J.-P. A1 - Azhari, T. A1 - Wippermann, J. A1 - Albes, J.M. A1 - Hintze, D. A1 - Eckardt, Stefan A1 - Könke, Carsten A1 - Wahlers, T. T1 - Numerical simulation techniques to study the structural response of the human chest following median sternotomy JF - The Annals of Thoracic Surgery N2 - Numerical simulation techniques to study the structural response of the human chest following median sternotomy KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2005 SP - 623 EP - 630 ER - TY - JOUR A1 - Häfner, Stefan A1 - Eckardt, Stefan A1 - Luther, Torsten A1 - Könke, Carsten T1 - Mesoscale modeling of concrete: Geometry and numerics JF - Computers and Structures N2 - Mesoscale modeling of concrete: Geometry and numerics KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2006 SP - 450 EP - 461 ER - TY - JOUR A1 - Unger, Jörg F. A1 - Eckardt, Stefan A1 - Könke, Carsten T1 - Modelling of cohesive crack growth in concrete structures with the extended finite element method JF - Computer Methods in Applied Mechanics and Engineering N2 - Modelling of cohesive crack growth in concrete structures with the extended finite element method KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2007 SP - 4087 EP - 4100 ER -