Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen
OPUS4-3460 Wissenschaftlicher Artikel Häfner, Stefan; Eckardt, Stefan; Luther, Torsten; Könke, Carsten Mesoscale modeling of concrete: Geometry and numerics Mesoscale modeling of concrete: Geometry and numerics 11 Computers and Structures 450 461 Institut für Strukturmechanik (ISM)
OPUS4-3467 Konferenzveröffentlichung Häfner, Stefan; Könke, Carsten Multigrid preconditioned conjugate gradient method in the mechanical analysis of heterogeneous solids Multigrid preconditioned conjugate gradient method in the mechanical analysis of heterogeneous solids Institut für Strukturmechanik (ISM)
OPUS4-3481 Konferenzveröffentlichung Unger, Jörg F.; Könke, Carsten Simulation of concrete using the extended finite element method Simulation of concrete using the extended finite element method Institut für Strukturmechanik (ISM)
OPUS4-3030 Konferenzveröffentlichung Unger, Jörg F.; Könke, Carsten Gürlebeck, Klaus; Könke, Carsten DISCRETE CRACK SIMULATION OF CONCRETE USING THE EXTENDED FINITE ELEMENTMETHOD The extended finite element method (XFEM) offers an elegant tool to model material discontinuities and cracks within a regular mesh, so that the element edges do not necessarily coincide with the discontinuities. This allows the modeling of propagating cracks without the requirement to adapt the mesh incrementally. Using a regular mesh offers the advantage, that simple refinement strategies based on the quadtree data structure can be used to refine the mesh in regions, that require a high mesh density. An additional benefit of the XFEM is, that the transmission of cohesive forces through a crack can be modeled in a straightforward way without introducing additional interface elements. Finally different criteria for the determination of the crack propagation angle are investigated and applied to numerical tests of cracked concrete specimens, which are compared with experimental results. 12 urn:nbn:de:gbv:wim2-20170327-30303 10.25643/bauhaus-universitaet.3030 Institut für Strukturmechanik (ISM)
OPUS4-3473 Konferenzveröffentlichung Luther, Torsten; Könke, Carsten Analysis of crack initiation and propagation in polyctystalline meso- and microstructures of metal materials Analysis of crack initiation and propagation in polyctystalline meso- and microstructures of metal materials Institut für Strukturmechanik (ISM)
OPUS4-3472 Konferenzveröffentlichung Luther, Torsten; Könke, Carsten Investigation of crack growth in polycrystalline mesostructures Investigation of crack growth in polycrystalline mesostructures Institut für Strukturmechanik (ISM)
OPUS4-2988 Konferenzveröffentlichung Luther, Torsten; Könke, Carsten Gürlebeck, Klaus; Könke, Carsten INVESTIGATION OF CRACK GROWTH IN POLYCRYSTALLINE MESOSTRUCTURES The design and application of high performance materials demands extensive knowledge of the materials damage behavior, which significantly depends on the meso- and microstructural complexity. Numerical simulations of crack growth on multiple length scales are promising tools to understand the damage phenomena in complex materials. In polycrystalline materials it has been observed that the grain boundary decohesion is one important mechanism that leads to micro crack initiation. Following this observation the paper presents a polycrystal mesoscale model consisting of grains with orthotropic material behavior and cohesive interfaces along grain boundaries, which is able to reproduce the crack initiation and propagation along grain boundaries in polycrystalline materials. With respect to the importance of modeling the geometry of the grain structure an advanced Voronoi algorithm is proposed to generate realistic polycrystalline material structures based on measured grain size distribution. The polycrystal model is applied to investigate the crack initiation and propagation in statically loaded representative volume elements of aluminum on the mesoscale without the necessity of initial damage definition. Future research work is planned to include the mesoscale model into a multiscale model for the damage analysis in polycrystalline materials. 11 urn:nbn:de:gbv:wim2-20170327-29886 10.25643/bauhaus-universitaet.2988 Institut für Strukturmechanik (ISM)
OPUS4-2963 Konferenzveröffentlichung Häfner, Stefan; Könke, Carsten Gürlebeck, Klaus; Könke, Carsten DAMAGE SIMULATION OF HETEROGENEOUS SOLIDS BY NONLOCAL FORMULATIONS ON ORTHOGONAL GRIDS The present paper is part of a comprehensive approach of grid-based modelling. This approach includes geometrical modelling by pixel or voxel models, advanced multiphase B-spline finite elements of variable order and fast iterative solver methods based on the multigrid method. So far, we have only presented these grid-based methods in connection with linear elastic analysis of heterogeneous materials. Damage simulation demands further considerations. The direct stress solution of standard bilinear finite elements is severly defective, especially along material interfaces. Besides achieving objective constitutive modelling, various nonlocal formulations are applied to improve the stress solution. Such a corrective data processing can either refer to input data in terms of Young's modulus or to the attained finite element stress solution, as well as to a combination of both. A damage-controlled sequentially linear analysis is applied in connection with an isotropic damage law. Essentially by a high resolution of the heterogeneous solid, local isotropic damage on the material subscale allows to simulate complex damage topologies such as cracks. Therefore anisotropic degradation of a material sample can be simulated. Based on an effectively secantial global stiffness the analysis is numerically stable. The iteration step size is controlled for an adequate simulation of the damage path. This requires many steps, but in the iterative solution process each new step starts with the solution of the prior step. Therefore this method is quite effective. The present paper provides an introduction of the proposed concept for a stable simulation of damage in heterogeneous solids. 15 urn:nbn:de:gbv:wim2-20170327-29638 10.25643/bauhaus-universitaet.2963 Institut für Strukturmechanik (ISM)
OPUS4-2964 Konferenzveröffentlichung Häfner, Stefan; Kessel, Marco; Könke, Carsten Gürlebeck, Klaus; Könke, Carsten MULTIPHASE B-SPLINE FINITE ELEMENTS OF VARIABLE ORDER IN THE MECHANICAL ANALYSIS OF HETEROGENEOUS SOLIDS Advanced finite elements are proposed for the mechanical analysis of heterogeneous materials. The approximation quality of these finite elements can be controlled by a variable order of B-spline shape functions. An element-based formulation is developed such that the finite element problem can iteratively be solved without storing a global stiffness matrix. This memory saving allows for an essential increase of problem size. The heterogeneous material is modelled by projection onto a uniform, orthogonal grid of elements. Conventional, strictly grid-based finite element models show severe oscillating defects in the stress solutions at material interfaces. This problem is cured by the extension to multiphase finite elements. This concept enables to define a heterogeneous material distribution within the finite element. This is possible by a variable number of integration points to each of which individual material properties can be assigned. Based on an interpolation of material properties at nodes and further smooth interpolation within the finite elements, a continuous material function is established. With both, continuous B-spline shape function and continuous material function, also the stress solution will be continuous in the domain. The inaccuracy implied by the continuous material field is by far less defective than the prior oscillating behaviour of stresses. One- and two-dimensional numerical examples are presented. 37 urn:nbn:de:gbv:wim2-20170327-29643 10.25643/bauhaus-universitaet.2964 Institut für Strukturmechanik (ISM)
OPUS4-2947 Konferenzveröffentlichung Eckardt, Stefan; Könke, Carsten Gürlebeck, Klaus; Könke, Carsten ADAPTIVE SIMULATION OF THE DAMAGE BEHAVIOR OF CONCRETE USING HETEROGENEOUS MULTISCALE MODELS In this paper an adaptive heterogeneous multiscale model, which couples two substructures with different length scales into one numerical model is introduced for the simulation of damage in concrete. In the presented approach the initiation, propagation and coalescence of microcracks is simulated using a mesoscale model, which explicitly represents the heterogeneous material structure of concrete. The mesoscale model is restricted to the damaged parts of the structure, whereas the undamaged regions are simulated on the macroscale. As a result an adaptive enlargement of the mesoscale model during the simulation is necessary. In the first part of the paper the generation of the heterogeneous mesoscopic structure of concrete, the finite element discretization of the mesoscale model, the applied isotropic damage model and the cohesive zone model are briefly introduced. Furthermore the mesoscale simulation of a uniaxial tension test of a concrete prism is presented and own obtained numerical results are compared to experimental results. The second part is focused on the adaptive heterogeneous multiscale approach. Indicators for the model adaptation and for the coupling between the different numerical models will be introduced. The transfer from the macroscale to the mesoscale and the adaptive enlargement of the mesoscale substructure will be presented in detail. A nonlinear simulation of a realistic structure using an adaptive heterogeneous multiscale model is presented at the end of the paper to show the applicability of the proposed approach to large-scale structures. 15 urn:nbn:de:gbv:wim2-20170327-29478 10.25643/bauhaus-universitaet.2947 Institut für Strukturmechanik (ISM)