Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-4725 Wissenschaftlicher Artikel Maiwald, Holger; Schwarz, Jochen; Kaufmann, Christian; Langhammer, Tobias; Golz, Sebastian; Wehner, Theresa Innovative Vulnerability and Risk Assessment of Urban Areas against Flood Events: Prognosis of Structural Damage with a New Approach Considering Flow Velocity The floods in 2002 and 2013, as well as the recent flood of 2021, caused billions Euros worth of property damage in Germany. The aim of the project Innovative Vulnerability and Risk Assessment of Urban Areas against Flood Events (INNOVARU) involved the development of a practicable flood damage model that enables realistic damage statements for the residential building stock. In addition to the determination of local flood risks, it also takes into account the vulnerability of individual buildings and allows for the prognosis of structural damage. In this paper, we discuss an improved method for the prognosis of structural damage due to flood impact. Detailed correlations between inundation level and flow velocities depending on the vulnerability of the building types, as well as the number of storeys, are considered. Because reliable damage data from events with high flow velocities were not available, an innovative approach was adopted to cover a wide range of flow velocities. The proposed approach combines comprehensive damage data collected after the 2002 flood in Germany with damage data of the 2011 Tohoku earthquake tsunami in Japan. The application of the developed methods enables a reliable reinterpretation of the structural damage caused by the August flood of 2002 in six study areas in the Free State of Saxony. Basel MDPI 28 Water 2022 Volume 14, issue 18, article 2793 1 28 urn:nbn:de:gbv:wim2-20221012-47254 10.3390/w14182793 Erdbebenzentrum