Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-3445 Wissenschaftlicher Artikel Most, Thomas; Bucher, Christian Energy-based simulation of concrete cracking using an improved mixed-mode cohesive crack model within a meshless discretization Energy-based simulation of concrete cracking using an improved mixed-mode cohesive crack model within a meshless discretization 20 International Journal for Numerical and Analytical Methods in Geomechanics 285 305 Institut für Strukturmechanik (ISM) OPUS4-3412 Wissenschaftlicher Artikel Most, Thomas; Ishii, H.; Geng, X.; Bolzern, P.; Colaneri, P.; De Nicolao, G. Discussion on Almost sure stability of stochastic linear systems with ergodic parameters Discussion on Almost sure stability of stochastic linear systems with ergodic parameters 6 European Journal of Control 124 130 Institut für Strukturmechanik (ISM) OPUS4-3411 Wissenschaftlicher Artikel Most, Thomas; Bucher, Christian New concepts for moving least squares: An interpolating non-singular weighting function and weighted nodal least squares New concepts for moving least squares: An interpolating non-singular weighting function and weighted nodal least squares 9 Engineering Analysis with Boundary Elements 461 470 Institut für Strukturmechanik (ISM) OPUS4-3443 Wissenschaftlicher Artikel Most, Thomas A natural neighbour-based moving least-squares approach for the element-free Galerkin method A natural neighbour-based moving least-squares approach for the element-free Galerkin method 28 International Journal for Numerical Methods in Engineering 224 252 Institut für Strukturmechanik (ISM) OPUS4-3444 Wissenschaftlicher Artikel Most, Thomas; Bucher, Christian Probabilistic analysis of concrete cracking using neural networks and random fields Probabilistic analysis of concrete cracking using neural networks and random fields 10 Probabilistic Engineering Mechanics 219 229 Institut für Strukturmechanik (ISM) OPUS4-3408 Wissenschaftlicher Artikel Bucher, Christian; Most, Thomas A comparison of approximate response functions in structural reliability analysis A comparison of approximate response functions in structural reliability analysis 9 Probabilistic Engineering Mechanics 154 163 Institut für Strukturmechanik (ISM) OPUS4-3502 Wissenschaftlicher Artikel Most, Thomas; Bucher, Christian; Schorling, York Dynamic stability analysis of non-linear structures with geometrical imperfections under random loading Dynamic stability analysis of non-linear structures with geometrical imperfections under random loading 19 Journal of Sound and Vibration 381 400 Institut für Strukturmechanik (ISM) OPUS4-3462 Wissenschaftlicher Artikel Most, Thomas; Bucher, Christian Stochastic simulation of cracking in concrete structures using multi-parameter random fields Stochastic simulation of cracking in concrete structures using multi-parameter random fields 19 International Journal of Reliability and Safety 168 187 Institut für Strukturmechanik (ISM) OPUS4-2993 Konferenzveröffentlichung Most, Thomas; Eckardt, Stefan; Schrader, Kai; Deckner, T. Gürlebeck, Klaus; Könke, Carsten AN IMPROVED COHESIVE CRACK MODEL FOR COMBINED CRACK OPENING AND SLIDING UNDER CYCLIC LOADING The modeling of crack propagation in plain and reinforced concrete structures is still a field for many researchers. If a macroscopic description of the cohesive cracking process of concrete is applied, generally the Fictitious Crack Model is utilized, where a force transmission over micro cracks is assumed. In the most applications of this concept the cohesive model represents the relation between the normal crack opening and the normal stress, which is mostly defined as an exponential softening function, independently from the shear stresses in tangential direction. The cohesive forces are then calculated only from the normal stresses. By Carol et al. 1997 an improved model was developed using a coupled relation between the normal and shear damage based on an elasto-plastic constitutive formulation. This model is based on a hyperbolic yield surface depending on the normal and the shear stresses and on the tensile and shear strength. This model also represents the effect of shear traction induced crack opening. Due to the elasto-plastic formulation, where the inelastic crack opening is represented by plastic strains, this model is limited for applications with monotonic loading. In order to enable the application for cases with un- and reloading the existing model is extended in this study using a combined plastic-damage formulation, which enables the modeling of crack opening and crack closure. Furthermore the corresponding algorithmic implementation using a return mapping approach is presented and the model is verified by means of several numerical examples. Finally an investigation concerning the identification of the model parameters by means of neural networks is presented. In this analysis an inverse approximation of the model parameters is performed by using a given set of points of the load displacement curves as input values and the model parameters as output terms. It will be shown, that the elasto-plastic model parameters could be identified well with this approach, but require a huge number of simulations. 20 urn:nbn:de:gbv:wim2-20170327-29933 10.25643/bauhaus-universitaet.2993 Institut für Strukturmechanik (ISM) OPUS4-3484 Wissenschaftlicher Artikel Most, Thomas; Bucher, Christian A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions 17 Structural Engineering and Mechanics 315 332 Institut für Strukturmechanik (ISM)