Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-3460 Wissenschaftlicher Artikel Häfner, Stefan; Eckardt, Stefan; Luther, Torsten; Könke, Carsten Mesoscale modeling of concrete: Geometry and numerics Mesoscale modeling of concrete: Geometry and numerics 11 Computers and Structures 450 461 Institut für Strukturmechanik (ISM) OPUS4-2947 Konferenzveröffentlichung Eckardt, Stefan; Könke, Carsten Gürlebeck, Klaus; Könke, Carsten ADAPTIVE SIMULATION OF THE DAMAGE BEHAVIOR OF CONCRETE USING HETEROGENEOUS MULTISCALE MODELS In this paper an adaptive heterogeneous multiscale model, which couples two substructures with different length scales into one numerical model is introduced for the simulation of damage in concrete. In the presented approach the initiation, propagation and coalescence of microcracks is simulated using a mesoscale model, which explicitly represents the heterogeneous material structure of concrete. The mesoscale model is restricted to the damaged parts of the structure, whereas the undamaged regions are simulated on the macroscale. As a result an adaptive enlargement of the mesoscale model during the simulation is necessary. In the first part of the paper the generation of the heterogeneous mesoscopic structure of concrete, the finite element discretization of the mesoscale model, the applied isotropic damage model and the cohesive zone model are briefly introduced. Furthermore the mesoscale simulation of a uniaxial tension test of a concrete prism is presented and own obtained numerical results are compared to experimental results. The second part is focused on the adaptive heterogeneous multiscale approach. Indicators for the model adaptation and for the coupling between the different numerical models will be introduced. The transfer from the macroscale to the mesoscale and the adaptive enlargement of the mesoscale substructure will be presented in detail. A nonlinear simulation of a realistic structure using an adaptive heterogeneous multiscale model is presented at the end of the paper to show the applicability of the proposed approach to large-scale structures. 15 urn:nbn:de:gbv:wim2-20170327-29478 10.25643/bauhaus-universitaet.2947 Institut für Strukturmechanik (ISM)