Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-1584 Masterarbeit / Diplomarbeit Asslan, Milad An Experimental Study on the Initial Shear Stiffness in Granular Material under Controlled Multi-Phase Laboratory Conditions The initial shear modulus, Gmax, of soil is an important parameter for a variety of geotechnical design applications. This modulus is typically associated with shear strain levels about 5*10^-3% and below. The critical role of soil stiffness at small-strains in the design and analysis of geotechnical infrastructure is now widely accepted. Gmax is a key parameter in small-strain dynamic analyses such as those to predict soil behavior or soil-structure interaction during earthquake, explosions, machine or traffic vibration where it is necessary to know how the shear modulus degrades from its small-strain value as the level of shear strain increases. Gmax can be equally important for small-strain cyclic situations such as those caused by wind or wave loading and for small-strain static situations as well. Gmax may also be used as an indirect indication of various soil parameters, as it, in many cases, correlates well to other soil properties such as density and sample disturbance. In recent years, a technique using bender elements was developed to investigate the small-strain shear modulus Gmax. The objective of this thesis is to study the initial shear stiffness for various sands with different void ratios, densities, grain size distribution under dry and saturated conditions, then to compare empirical equations to predict Gmax and results from other testing devices with results of bender elements from this study. 100 urn:nbn:de:gbv:wim2-20120402-15842 10.25643/bauhaus-universitaet.1584 Professur Bodenmechanik OPUS4-1587 Bericht Asslan, Milad Factors Influencing Small-Strain Stiffness of soils and its Determination This term paper presents a literature review and discusses concepts of the following point: 1- Factors affecting small-strain stiffness in soil; 2- Methods to determine small-strain shear stiffness in laboratory and in-situ; 3- Brief introduction into wave propagation and 4- Bender elements technique to determine shear wave velocity in soil. urn:nbn:de:gbv:wim2-20120402-15870 10.25643/bauhaus-universitaet.1587 Professur Bodenmechanik