Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-1786 Masterarbeit / Diplomarbeit Theiler, Michael Interaktive Visualisierung von Qualitätsdefiziten komplexer Bauwerksinformationsmodelle auf Basis der Industry Foundation Classes (IFC) in einer webbasierten Umgebung Der inhaltlichen Qualitätssicherung von Bauwerksinformationsmodellen (BIM) kommt im Zuge einer stetig wachsenden Nutzung der verwendeten BIM für unterschiedliche Anwen-dungsfälle eine große Bedeutung zu. Diese ist für jede am Datenaustausch beteiligte Software dem Projektziel entsprechend durchzuführen. Mit den Industry Foundation Classes (IFC) steht ein etabliertes Format für die Beschreibung und den Austausch eines solchen Modells zur Verfügung. Für den Prozess der Qualitätssicherung wird eine serverbasierte Testumgebung Bestandteil des neuen Zertifizierungsverfahrens der IFC sein. Zu diesem Zweck wurde durch das „iabi - Institut für angewandte Bauinformatik" in Zusammenarbeit mit „buildingSMART e.V." (http://www.buildingsmart.de) ein Global Testing Documentation Server (GTDS) implementiert. Der GTDS ist eine, auf einer Datenbank basierte, Web-Applikation, die folgende Intentionen verfolgt: • Bereitstellung eines Werkzeugs für das qualitative Testen IFC-basierter Modelle • Unterstützung der Kommunikation zwischen IFC Entwicklern und Anwendern • Dokumentation der Qualität von IFC-basierten Softwareanwendungen • Bereitstellung einer Plattform für die Zertifizierung von IFC Anwendungen Gegenstand der Arbeit ist die Planung und exemplarische Umsetzung eines Werkzeugs zur interaktiven Visualisierung von Qualitätsdefiziten, die vom GTDS im Modell erkannt wurden. Die exemplarische Umsetzung soll dabei aufbauend auf den OPEN IFC TOOLS (http://www.openifctools.org) erfolgen. 93 urn:nbn:de:gbv:wim2-20121214-17869 10.25643/bauhaus-universitaet.1786 Professur Informatik im Bauwesen OPUS4-4131 Masterarbeit / Diplomarbeit Fröhlich, Jan On systematic approaches for interpreted information transfer of inspection data from bridge models to structural analysis In conjunction with the improved methods of monitoring damage and degradation processes, the interest in reliability assessment of reinforced concrete bridges is increasing in recent years. Automated imagebased inspections of the structural surface provide valuable data to extract quantitative information about deteriorations, such as crack patterns. However, the knowledge gain results from processing this information in a structural context, i.e. relating the damage artifacts to building components. This way, transformation to structural analysis is enabled. This approach sets two further requirements: availability of structural bridge information and a standardized storage for interoperability with subsequent analysis tools. Since the involved large datasets are only efficiently processed in an automated manner, the implementation of the complete workflow from damage and building data to structural analysis is targeted in this work. First, domain concepts are derived from the back-end tasks: structural analysis, damage modeling, and life-cycle assessment. The common interoperability format, the Industry Foundation Class (IFC), and processes in these domains are further assessed. The need for usercontrolled interpretation steps is identified and the developed prototype thus allows interaction at subsequent model stages. The latter has the advantage that interpretation steps can be individually separated into either a structural analysis or a damage information model or a combination of both. This approach to damage information processing from the perspective of structural analysis is then validated in different case studies. 82 urn:nbn:de:gbv:wim2-20200416-41310 10.25643/bauhaus-universitaet.4131 Professur Modellierung und Simulation - Konstruktion OPUS4-6416 Masterarbeit / Diplomarbeit Alabassy, Mohamed Said Helmy Automated Approach for Building Information Modelling of Crack Damages via Image Segmentation and Image-based 3D Reconstruction As machine vision-based inspection methods in the field of Structural Health Monitoring (SHM) continue to advance, the need for integrating resulting inspection and maintenance data into a centralised building information model for structures notably grows. Consequently, the modelling of found damages based on those images in a streamlined automated manner becomes increasingly important, not just for saving time and money spent on updating the model to include the latest information gathered through each inspection, but also to easily visualise them, provide all stakeholders involved with a comprehensive digital representation containing all the necessary information to fully understand the structure's current condition, keep track of any progressing deterioration, estimate the reduced load bearing capacity of the damaged element in the model or simulate the propagation of cracks to make well-informed decisions interactively and facilitate maintenance actions that optimally extend the service life of the structure. Though significant progress has been recently made in information modelling of damages, the current devised methods for the geometrical modelling approach are cumbersome and time consuming to implement in a full-scale model. For crack damages, an approach for a feasible automated image-based modelling is proposed utilising neural networks, classical computer vision and computational geometry techniques with the aim of creating valid shapes to be introduced into the information model, including related semantic properties and attributes from inspection data (e.g., width, depth, length, date, etc.). The creation of such models opens the door for further possible uses ranging from more accurate structural analysis possibilities to simulation of damage propagation in model elements, estimating deterioration rates and allows for better documentation, data sharing, and realistic visualisation of damages in a 3D model. 101 urn:nbn:de:gbv:wim2-20230818-64162 10.25643/bauhaus-universitaet.6416 Professur Intelligentes Technisches Design