Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-1293 Dissertation Pang, Zhiqi Phosphorus enrichment in the treatment of pig manure in China using anaerobic digestion technology Phosphorus (P) is a key irreplaceable nutrient element in all life forms. Almost all phosphorus used by society is mined from non-renewable phosphate rock. Approximately 80% of global phosphate rock consumption is used for fertilizer production. However, as a finite resource, the world phosphate reserve could be exhausted within the next 100-250 years. The phosphate resource in China is also limited. The exploitable deposits could be exhausted within 70 years. Investigations show that the largest recoverable phosphate resource in China is found in animal manure. It was estimated that the potential phosphate resource in intensive-scale animal plants accounts for 47% of the total consumption of phosphate rock of the country each year. Pig manure contains phosphorus and nitrogen in high concentration. The objective of this study is to investigate forced P-precipitation in pig manure combined with anaerobic digestion; when biogas is generated, an enriched P-containing digested manure sludge can be obtained. Anaerobic digestion experiments indicated that total concentrations of phosphorus (TP) and kjeldahl nitrogen (TKN) remained basically constant before and after anaerobic digestion. However, the composition of nitrogen and phosphorus in digested manure was quite different; 37.7% of phosphorus existed as PO4-P in the raw pig manure, whilst 20.8% of PO4-P was present in the digested pig manure. NH4-N accounted for 50.4% of the total TKN in raw pig manure, while most of the TKN in digested manure (79.3%) was composed of NH4-N. The pH value of pig manure rose by 0.88 units after anaerobic digestion. PO4-P was reduced by 45% during anaerobic digestion. The average molar ratios of Mg/P and Ca/P achieved were 1.3 and 1.7. It was found that solid/liquid separation has little influence on the change in the molar ratios. The optimal position for P-precipitation is after anaerobic digestion. P-precipitation should be conducted in homogeneous digested pig manure. The ideal pH range for P-precipitation is between 8.0 and 9.5. In the pH range of 8.8-9.5, struvite precipitation dominates the precipitation reaction. The existence of calcium ions results in competitive reaction with magnesium ions. In the pH range of 8.0-8.8, calcium phosphate was apt to form. Both MgCl2•6H2O and MgO can be adopted as a magnesium source. MgO is suitable for supplementation in raw manure. Without the addition of other alkali, the pH value rose to 8.5. Nearly 85% of soluble phosphorus (PO4-P) could be removed from liquid portion. MgCl2•6H2O has good solubility. When MgCl2•6H2O was used at a pH value of 9.0, the equilibrium time required was 30 minutes. The appropriate Mg2+/PO4-P molar ratio was 1.3. Under these conditions, whether with raw or digested manure, 90% of PO4-P could be removed. Forced P-precipitation combined with anaerobic digestion is suitable for application in China. More than 90% of the soluble phosphorus could be removed from the liquid portion of pig manure through forced P-precipitation. With the aid of flocculants, 95.7% of the total phosphorus could be precipitated in the final manure solid. 2008 Anreicherung von Phosphor an die Gärreste bei der anaeroben Schweinegüllebehandlung urn:nbn:de:gbv:wim2-20080704-13640 10.25643/bauhaus-universitaet.1293 Professur Siedlungswasserwirtschaft