Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen
OPUS4-2840 Konferenzveröffentlichung Ebert, Svend; Bernstein, Swanhild; Cerejeiras, Paula; Kähler, Uwe Gürlebeck, Klaus; Könke, Carsten NONZONAL WAVELETS ON S^N In the present article we will construct wavelets on an arbitrary dimensional sphere S^n due the approach of approximate Identities. There are two equivalently approaches to wavelets. The group theoretical approach formulates a square integrability condition for a group acting via unitary, irreducible representation on the sphere. The connection to the group theoretical approach will be sketched. The concept of approximate identities uses the same constructions in the background, here we select an appropriate section of dilations and translations in the group acting on the sphere in two steps. At First we will formulate dilations in terms of approximate identities and than we call in translations on the sphere as rotations. This leads to the construction of an orthogonal polynomial system in L²(SO(n+1)). That approach is convenient to construct concrete wavelets, since the appropriate kernels can be constructed form the heat kernel leading to the approximate Identity of Gauss-Weierstra\ss. We will work out conditions to functions forming a family of wavelets, subsequently we formulate how we can construct zonal wavelets from a approximate Identity and the relation to admissibility of nonzonal wavelets. Eventually we will give an example of a nonzonal Wavelet on $S^n$, which we obtain from the approximate identity of Gauss-Weierstraß. 18 urn:nbn:de:gbv:wim2-20170314-28406 10.25643/bauhaus-universitaet.2840 In Zusammenarbeit mit der Bauhaus-Universität Weimar
OPUS4-285 Konferenzveröffentlichung Cerejeiras, Paula Hyperbolic Qp-scales The Qp-scales were first introduced in [1] as interpolation spaces between the Bloch and Dirichlet spaces in the complex space. ... However, such treatment presents the disadvantage of only considering the Euclidean case. In order to obtain an approach to homogeneous hyperbolic manifolds, the projective model of Gel'fand was retaken in [2]. With the help of a convenient fundamental solution for the hyperbolic (homogeneous of degree ®) D® (see [5]) it was introduced in [7] and [3] equivalent Qp scales for homogeneous hyperbolic spaces. In this talk we shall present and study some properties of this hyperbolic scale. 2003 urn:nbn:de:gbv:wim2-20111215-2853 10.25643/bauhaus-universitaet.285 Professur Informatik im Bauwesen