Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-1371 Dissertation Springer, Jan P. Multi-Frame Rate Rendering Multi-frame rate rendering is a parallel rendering technique that renders interactive parts of a scene on one graphics card while the rest of the scene is rendered asynchronously on a second graphics card. The resulting color and depth images of both render processes are composited, by optical superposition or digital composition, and displayed. The results of a user study confirm that multi-frame rate rendering can significantly improve the interaction performance. Multi-frame rate rendering is naturally implemented on a graphics cluster. With the recent availability of multiple graphics cards in standalone systems the method can also be implemented on a single computer system where memory bandwidth is much higher compared to off-the-shelf networking technology. This decreases overall latency and further improves interactivity. Multi-frame rate rendering was also investigated on a single graphics processor by interleaving the rendering streams for the interactive elements and the rest of the scene. This approach enables the use of multi-frame rate rendering on low-end graphics systems such as laptops, mobile phones, and PDAs. Advanced multi-frame rate rendering techniques reduce the limitations of the basic approach. The interactive manipulation of light sources and their parameters affects the entire scene. A multi-GPU deferred shading method is presented that splits the rendering task into a rasterization and lighting pass and assigns the passes to the appropriate image generators such that light manipulations at high frame rates become possible. A parallel volume rendering technique allows the manipulation of objects inside a translucent volume at high frame rates. This approach is useful for example in medical applications, where small probes need to be positioned inside a computed-tomography image. Due to the asynchronous nature of multi-frame rate rendering artifacts may occur during migration of objects from the slow to the fast graphics card, and vice versa. Proper state management allows to almost completely avoid these artifacts. Multi-frame rate rendering significantly improves the interactive manipulation of objects and lighting effects. This leads to a considerable increase of the size for 3D scenes that can be manipulated compared to conventional methods. 2008 Multi-Frame Rate Rendering urn:nbn:de:gbv:wim2-20081127-14395 10.25643/bauhaus-universitaet.1371 Professur Systeme der Virtuellen Realität