Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-540 Wissenschaftlicher Artikel Melnikov, B. E.; Kadashevich, I. Y.; Semenov, Artem Damage of Metalworkses under the Complex Varying Loading The phenomenological and computational aspects of the various damage models applications for the low and multi cyclic fatigue processes are investigated. Damage is considered as internal state variable, describing macroscopic effects of the progressive material degradation, within the framework of continuum damage mechanics. Present analysis is restricted to the case of isotropic damage, which can be modeled by a scalar variable. The strain, force and power types of kinetic equations for the damage evolution description are considered. The original mixed strain-power type damage model is developed for taking into account the different physical fracture mechanism in monotone and cyclic loading. The constitutive equations of plastic flow theory coupled and uncoupled to damage has been considered. The rational algorithm of implementation into finite element code is considered for developed damage models. Set of the computational experiments has been carried out for the various structures (huge aerials, pipelines, fastening units, vessel of nuclear reactor) and cases of loading. The comparison of the predictions of the developed model with experimental data is performed for 1X18H10T steel tubular specimens for complex paths of loading and for complex profiles beams under cyclic loading. Damage field distribution is the basic information for the prediction of crack initiation in structures. The developed method of structural parameter for stress concentration zones is discussed for correcting of crack location. It allows to describe the crack initiation near surface domain as observe in numerous experiments. 1997 urn:nbn:de:gbv:wim2-20111215-5409 10.25643/bauhaus-universitaet.540 Professur Informatik im Bauwesen OPUS4-4562 Wissenschaftlicher Artikel Ibanez, Stalin; Kraus, Matthias A Numerical Approach for Plastic Cross Cross-Sectional Analyses of Steel Members Global structural analyses in civil engineering are usually performed considering linear-elastic material behavior. However, for steel structures, a certain degree of plasticization depending on the member classification may be considered. Corresponding plastic analyses taking material nonlinearities into account are effectively realized using numerical methods. Frequently applied finite elements of two and three-dimensional models evaluate the plasticity at defined nodes using a yield surface, i.e. by a yield condition, hardening rule, and flow rule. Corresponding calculations are connected to a large numerical as well as time-consuming effort and they do not rely on the theoretical background of beam theory, to which the regulations of standards mainly correspond. For that reason, methods using beam elements (one-dimensional) combined with cross-sectional analyses are commonly applied for steel members in terms of plastic zones theories. In these approaches, plasticization is in general assessed by means of axial stress only. In this paper, more precise numerical representation of the combined stress states, i.e. axial and shear stresses, is presented and results of the proposed approach are validated and discussed. Berlin Ernst & Sohn, a Wiley brand 9 ce/papers 2021 Volume 4, issue 2-4 2098 2106 urn:nbn:de:gbv:wim2-20220112-45622 10.1002/cepa.1527 Professur Stahl- und Hybridbau OPUS4-580 Konferenzveröffentlichung Daniunas, A.; Komka, A.; Werner, F. ANALYSIS AND DETERMINATION OF STRENGTH IN PLASTIC STAGE OF FREE FORM STEEL SHAPES The steel structure design codes require to check up the member strength when evaluating plastic deformations. The model of perfectly plastic material is accepted. The strength criteria for simple cross-sections (I section, etc.) of steel members are given in design codes. The analytical strength criteria for steel cross-sections and numerical approaches based on stepwise procedure are investigated in many articles. Another way for checking the carrying capacity of cross-sections is the use of methods that are applied for defining strain-deformed state of elastic perfectly plastic systems. In this paper non-iterative methods are suggested for checking strength of cross-sections. Carrying capacity of cross section is verified according to extremum principle of plastic fail under monotonically loading and the strain-deformed state of cross-section is defined according to extremum energy principals of elastic potential of residual stresses and complementary work of residual displacements. The mathematical expressions of these principals for discrete cross-section are formulated as problems of convex mathematical programming. The cross-section of steel member using finite element method is divided into free form plane elements. The constant distribution of stresses along the finite element is accepted. The relationships of finite elements for static formulation of the problem are formed so, that kinematics formulation relationships could be obtained in a formal way using the theory of duality. Numerical examples of determination of cross-section strength, composition of interactive curves and composition of moment-curvature curves for different axial force levels are presented. 2000 urn:nbn:de:gbv:wim2-20111215-5803 10.25643/bauhaus-universitaet.580 Professur Informatik im Bauwesen OPUS4-570 Konferenzveröffentlichung Bonev, Z.; Hristov, H. BEHAVIOR FACTOR EVALUATION BASED ON SDOF SYSTEM PRESENTATION AND ENERGY APPROACH Rectangular steel frames are considered and subjected to strong ground motion. Their behavior factor is numerically evaluated using nonlinear time history analysis and different ground acceleration records. The behavior factor is determined assuming severe collapse mechanism occurs throughout the time history. The system of equations is transformed into single equation end then the energy balance concept is applied. The expression for the behavior factor is derived and its application to four story two bays steel frame is illustrated and the corresponding results are discussed. 2000 urn:nbn:de:gbv:wim2-20111215-5702 10.25643/bauhaus-universitaet.570 Professur Informatik im Bauwesen