Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-294 Konferenzveröffentlichung Berbig, Torsten; Menzel, Karsten; Eisenblätter, Karin "Mobile Computing" - Anforderungen & Einführungsstratgie aus Sicht der Baupraxis Die Sicherung der Wettbewerbsfähigkeit im Bereich des Bauwesens, insbesondere kleinerer und mittelständischer Betriebe erfordert ein aktives Handeln als Antwort auf die sich ändernde Wettbewerbssituation. Einen wesentlichen Wettbewerbsvorteil können kleine unternehmerische Einheiten durch höhere Flexibilität, schnelle Reaktion auf Kundenwünsche oder aktuelle Situationen auf der Baustelle und Marktnähe erreichen. Dazu ist es nötig, die Informations- und Kommunikationsströme durch Einsatz standardisierter und kostengünstiger Hard- und Software wie z.B. Handhelds zu unterstützen und insbesondere die existierenden Hindernisse im Informationsfluss zwischen Baustelle und Büro zu beseitigen. Am Beispiel der Projekte >IuK - SystemBau< und >eSharing< wird eine Einführungsstrategie für >Mobile Computing< in kleinen unternehmerischen Einheiten des Bauwesens (KMU) basierend auf einer umfangreichen Anforderungsanalyse vorgestellt. Folgende Aspekte sollen beschrieben werden: durchgängiger Einsatz der Technik unter Beachtung der verschiedenen Qualifikationsniveaus, Einführungsunterstützung durch Schulungen, Prozessanalyse und mögliche Integration in bestehende Software-Umgebungen sowie Feldtests. 2003 urn:nbn:de:gbv:wim2-20111215-2948 10.25643/bauhaus-universitaet.294 Professur Informatik im Bauwesen OPUS4-2940 Konferenzveröffentlichung Cruz, J. F.; Falcão, M. Irene; Malonek, Helmuth Robert Gürlebeck, Klaus; Könke, Carsten 3D-MAPPINGS AND THEIR APPROXIMATION BY SERIES OF POWERS OF A SMALL PARAMETER In classical complex function theory the geometric mapping property of conformality is closely linked with complex differentiability. In contrast to the planar case, in higher dimensions the set of conformal mappings is only the set of Möbius transformations. Unfortunately, the theory of generalized holomorphic functions (by historical reasons they are called monogenic functions) developed on the basis of Clifford algebras does not cover the set of Möbius transformations in higher dimensions, since Möbius transformations are not monogenic. But on the other side, monogenic functions are hypercomplex differentiable functions and the question arises if from this point of view they can still play a special role for other types of 3D-mappings, for instance, for quasi-conformal ones. On the occasion of the 16th IKM 3D-mapping methods based on the application of Bergman's reproducing kernel approach (BKM) have been discussed. Almost all authors working before that with BKM in the Clifford setting were only concerned with the general algebraic and functional analytic background which allows the explicit determination of the kernel in special situations. The main goal of the abovementioned contribution was the numerical experiment by using a Maple software specially developed for that purpose. Since BKM is only one of a great variety of concrete numerical methods developed for mapping problems, our goal is to present a complete different from BKM approach to 3D-mappings. In fact, it is an extension of ideas of L. V. Kantorovich to the 3-dimensional case by using reduced quaternions and some suitable series of powers of a small parameter. Whereas until now in the Clifford case of BKM the recovering of the mapping function itself and its relation to the monogenic kernel function is still an open problem, this approach avoids such difficulties and leads to an approximation by monogenic polynomials depending on that small parameter. 14 urn:nbn:de:gbv:wim2-20170327-29406 10.25643/bauhaus-universitaet.2940 In Zusammenarbeit mit der Bauhaus-Universität Weimar OPUS4-2928 Konferenzveröffentlichung Bock, Sebastian; Gürlebeck, Klaus Gürlebeck, Klaus; Könke, Carsten A Coupled Ritz-Galerkin Approach Using Holomorphic and Anti-holomorphic Functions The contribution focuses on the development of a basic computational scheme that provides a suitable calculation environment for the coupling of analytical near-field solutions with numerical standard procedures in the far-field of the singularity. The proposed calculation scheme uses classical methods of complex function theory, which can be generalized to 3-dimensional problems by using the framework of hypercomplex analysis. The adapted approach is mainly based on the factorization of the Laplace operator EMBED Equation.3 by the Cauchy-Riemann operator EMBED Equation.3 , where exact solutions of the respective differential equation are constructed by using an orthonormal basis of holomorphic and anti-holomorphic functions. 14 urn:nbn:de:gbv:wim2-20170327-29281 10.25643/bauhaus-universitaet.2928 Institut für Bauinformatik, Mathematik und Bauphysik (IBMB) OPUS4-158 Konferenzveröffentlichung Freundt, Martin; Beucke, Karl A flexible model for scheduling building processes based on graph theory and fuzzy numbers The methods currently used for scheduling building processes have some major advantages as well as disadvantages. The main advantages are the arrangement of the tasks of a project in a clear, easily readable form and the calculation of valuable information like critical paths. The main disadvantage on the other hand is the inflexibility of the model caused by the modeling paradigms. Small changes of the modeled information strongly influence the whole model and lead to the need to change many more details in the plan. In this article an approach is introduced allowing the creation of more flexible schedules. It aims towards a more robust model that lowers the need to change more than a few information while being able to calculate the important propositions of the known models and leading to further valuable conclusions. 2004 urn:nbn:de:gbv:wim2-20111215-1587 10.25643/bauhaus-universitaet.158 Professur Informatik im Bauwesen OPUS4-2919 Konferenzveröffentlichung Baitsch, Matthias; Hartmann, Dietrich Gürlebeck, Klaus; Könke, Carsten A FRAMEWORK FOR THE INTERACTIVE VISUALIZATION OF ENGINEERING MODELS Interactive visualization based on 3D computer graphics nowadays is an indispensable part of any simulation software used in engineering. Nevertheless, the implementation of such visualization software components is often avoided in research projects because it is a challenging and potentially time consuming task. In this contribution, a novel Java framework for the interactive visualization of engineering models is introduced. It supports the task of implementing engineering visualization software by providing adequate program logic as well as high level classes for the visual representation of entities typical for engineering models. The presented framework is built on top of the open source visualization toolkit VTK. In VTK, a visualization model is established by connecting several filter objects in a so called visualization pipeline. Although designing and implementing a good pipeline layout is demanding, VTK does not support the reuse of pipeline layouts directly. Our framework tailors VTK to engineering applications on two levels. On the first level it adds new - engineering model specific - filter classes to VTK. On the second level, ready made pipeline layouts for certain aspects of engineering models are provided. For instance there is a pipeline class for one-dimensional elements like trusses and beams that is capable of showing the elements along with deformations and member forces. In order to facilitate the implementation of a graphical user interface (GUI) for each pipeline class, there exists a reusable Java Swing GUI component that allows the user to configure the appearance of the visualization model. Because of the flexible structure, the framework can be easily adapted and extended to new problem domains. Currently it is used in (i) an object-oriented p-version finite element code for design optimization, (ii) an agent based monitoring system for dam structures and (iii) the simulation of destruction processes by controlled explosives based on multibody dynamics. Application examples from all three domains illustrates that the approach presented is powerful as well as versatile. 9 urn:nbn:de:gbv:wim2-20170327-29194 10.25643/bauhaus-universitaet.2919 In Zusammenarbeit mit der Bauhaus-Universität Weimar OPUS4-2826 Konferenzveröffentlichung Wiggenbrock, Jens; Smarsly, Kay Gürlebeck, Klaus; Lahmer, Tom A GENERIC FRAMEWORK SUPPORTING DISTRIBUTED COMPUTING IN ENGINEERING APPLICATIONS Modern distributed engineering applications are based on complex systems consisting of various subsystems that are connected through the Internet. Communication and collaboration within an entire system requires reliable and efficient data exchange between the subsystems. Middleware developed within the web evolution during the past years provides reliable and efficient data exchange for web applications, which can be adopted for solving the data exchange problems in distributed engineering applications. This paper presents a generic approach for reliable and efficient data exchange between engineering devices using existing middleware known from web applications. Different existing middleware is examined with respect to the suitability in engineering applications. In this paper, a suitable middleware is shown and a prototype implementation simulating distributed wind farm control is presented and validated using several performance measurements. 9 Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar urn:nbn:de:gbv:wim2-20170314-28260 10.25643/bauhaus-universitaet.2826 Professur Angewandte Mathematik OPUS4-2929 Konferenzveröffentlichung Brackx, Fred; De Knock, B.; De Schepper, Hennie Gürlebeck, Klaus; Könke, Carsten A MULTI--DIMENSIONAL HILBERT TRANSFORM IN ANISOTROPIC CLIFFORD ANALYSIS In earlier research, generalized multidimensional Hilbert transforms have been constructed in m-dimensional Euclidean space, in the framework of Clifford analysis. Clifford analysis, centred around the notion of monogenic functions, may be regarded as a direct and elegant generalization to higher dimension of the theory of the holomorphic functions in the complex plane. The considered Hilbert transforms, usually obtained as a part of the boundary value of an associated Cauchy transform in m+1 dimensions, might be characterized as isotropic, since the metric in the underlying space is the standard Euclidean one. In this paper we adopt the idea of a so-called anisotropic Clifford setting, which leads to the introduction of a metric dependent m-dimensional Hilbert transform, showing, at least formally, the same properties as the isotropic one. The Hilbert transform being an important tool in signal analysis, this metric dependent setting has the advantage of allowing the adjustment of the co-ordinate system to possible preferential directions in the signals to be analyzed. A striking result to be mentioned is that the associated anisotropic (m+1)-dimensional Cauchy transform is no longer uniquely determined, but may stem from a diversity of (m+1)-dimensional "mother" metrics. 15 urn:nbn:de:gbv:wim2-20170327-29297 10.25643/bauhaus-universitaet.2929 In Zusammenarbeit mit der Bauhaus-Universität Weimar OPUS4-2994 Konferenzveröffentlichung Most, Thomas; Bucher, Christian; Macke, M. Gürlebeck, Klaus; Könke, Carsten A NATURAL NEIGHBOR BASED MOVING LEAST SQUARES APPROACH WITH INTERPOLATING WEIGHTING FUNCTION The Element-free Galerkin Method has become a very popular tool for the simulation of mechanical problems with moving boundaries. The internally applied Moving Least Squares approximation uses in general Gaussian or cubic weighting functions and has compact support. Due to the approximative character of this method the obtained shape functions do not fulfill the interpolation condition, which causes additional numerical effort for the imposition of the essential boundary conditions. The application of a singular weighting function, which leads to singular coefficient matrices at the nodes, can solve this problem, but requires a very careful placement of the integration points. Special procedures for the handling of such singular matrices were proposed in literature, which require additional numerical effort. In this paper a non-singular weighting function is presented, which leads to an exact fulfillment of the interpolation condition. This weighting function leads to regular values of the weights and the coefficient matrices in the whole interpolation domain even at the nodes. Furthermore this function gives much more stable results for varying size of the influence radius and for strongly distorted nodal arrangements than classical weighting function types. Nevertheless, for practical applications the results are similar as these obtained with the regularized weighting type presented by the authors in previous publications. Finally a new concept will be presented, which enables an efficient analysis of systems with strongly varying node density. In this concept the nodal influence domains are adapted depending on the nodal configuration by interpolating the influence radius for each direction from the distances to the natural neighbor nodes. This approach requires a Voronoi diagram of the domain, which is available in this study since Delaunay triangles are used as integration background cells. In the numerical examples it will be shown, that this method leads to a more uniform and reduced number of influencing nodes for systems with varying node density than the classical circular influence domains, which means that the small additional numerical effort for interpolating the influence radius leads to remarkable reduction of the total numerical cost in a linear analysis while obtaining similar results. For nonlinear calculations this advantage would be even more significant. 17 urn:nbn:de:gbv:wim2-20170327-29943 10.25643/bauhaus-universitaet.2994 Institut für Strukturmechanik (ISM) OPUS4-2779 Konferenzveröffentlichung Morais, Joao; Georgiev, Svetlin; Sprößig, Wolfgang Gürlebeck, Klaus; Lahmer, Tom; Werner, Frank A NOTE ON THE CLIFFORD FOURIER-STIELTJES TRANSFORM The purpose of this article is to provide an overview of the real Clifford Fourier- Stieltjes transform (CFST) and of its important properties. Additionally, we introduce the definition of convolution of Clifford functions of bounded variation. 13 Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar urn:nbn:de:gbv:wim2-20170314-27794 10.25643/bauhaus-universitaet.2779 In Zusammenarbeit mit der Bauhaus-Universität Weimar OPUS4-2893 Konferenzveröffentlichung Stack, Paul; Manzoor, Farhan; Menzel, Karsten; Cahill, Brian Gürlebeck, Klaus; Könke, Carsten A SERVICE ORIENTED ARCHITECTURE FOR BUILDING PERFORMANCE MONITORING Information technology plays a key role in the everyday operation of buildings and campuses. Many proprietary technologies and methodologies can assist in effective Building Performance Monitoring (BPM) and efficient managing of building resources. The integration of related tools like energy simulator packages, facility, energy and building management systems, and enterprise resource planning systems is of benefit to BPM. However, the complexity to integrating such domain specific systems prevents their common usage. Service Oriented Architecture (SOA) has been deployed successfully in many large multinational companies to create integrated and flexible software systems, but so far this methodology has not been applied broadly to the field of BPM. This paper envisions that SOA provides an effective integration framework for BPM. Service oriented architecture for the ITOBO framework for sustainable and optimised building operation is proposed and an implementation for a building performance monitoring system is introduced. 18 urn:nbn:de:gbv:wim2-20170314-28935 10.25643/bauhaus-universitaet.2893 In Zusammenarbeit mit der Bauhaus-Universität Weimar