Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-3092 Wissenschaftlicher Artikel Achenbach, Marcus; Lahmer, Tom; Morgenthal, Guido Identification of the thermal properties of concrete for the temperature calculation of concrete slabs and columns subjected to a standard fire—Methodology and proposal for simplified formulations The fire resistance of concrete members is controlled by the temperature distribution of the considered cross section. The thermal analysis can be performed with the advanced temperature dependent physical properties provided by 5EN6 1992-1-2. But the recalculation of laboratory tests on columns from 5TU6 Braunschweig shows, that there are deviations between the calculated and measured temperatures. Therefore it can be assumed, that the mathematical formulation of these thermal properties could be improved. A sensitivity analysis is performed to identify the governing parameters of the temperature calculation and a nonlinear optimization method is used to enhance the formulation of the thermal properties. The proposed simplified properties are partly validated by the recalculation of measured temperatures of concrete columns. These first results show, that the scatter of the differences from the calculated to the measured temperatures can be reduced by the proposed simple model for the thermal analysis of concrete. 6 Fire Safety Journal 87 80 86 urn:nbn:de:gbv:wim2-20170331-30929 10.1016/j.firesaf.2016.12.003 Professur Stochastik und Optimierung OPUS4-2905 Dissertation Hogan, Trevor Data and Dasein - A Phenomenology of Human-Data Relations In contemporary society, data representation is an important and essential part of many aspects of our daily lives. This thesis aims to contribute to our understanding on how people experience data and what role representational modality plays in the process of perception and interpretation. This research is grounded in phenomenology - I align my theoretical exploration to ideas and concepts from philosophical phenomenology, while also respecting the essence of a phenomenological approach in the choice and application of methods. Alongside offering a rich description of people's experience of data representation, the key contributions I claim transcend four areas: theory, methods, design, and empirical findings. From a theoretical perspective, besides describing a phenomenology of human-data relations, I define, for the first time, multisensory data representation and establish a design space for the study of this class of representation. In relation to methodologies, I describe and deploy two methods to investigate different aspects of data experience. I blend the Repertory Grid technique with a focus group session and show how this adaption can be used to elicit rich design relevant insight. I also introduce the Elicitation Interview technique as a method for gathering detailed and precise accounts of human experience. Furthermore, I describe for the first time, how this technique can be used to elicit accounts of experience with data. My contribution to design relates to the creation of a series of bespoke data-driven artefacts, as well as describing an approach to design that I call Design Probes, which allows researchers to focus their enquiry on specific design features. To answer the research questions I set out in this thesis, I report on a series of empirical studies that used the aforementioned methods. The findings of these studies show, for instance, how certain representational modalities cause us to have heightened awareness of our body, some are more difficult to interpret than others, some rely heavily on instinct and each of them solicit us to reference external events during the process of interpretation. I conclude that a phenomenology of human-data relations show how representational modality affects the way we experience data, it also shows how this experience unfolds and it offers insight into particular moments such as the formation of meaning. urn:nbn:de:gbv:wim2-20170323-29056 10.25643/bauhaus-universitaet.2905 Professur Medieninformatik OPUS4-2860 Dissertation Abeltshauser, Rainer Identification and separation of physical effects of coupled systems by using defined model abstractions The thesis investigates at the computer aided simulation process for operational vibration analysis of complex coupled systems. As part of the internal methods project "Absolute Values" of the BMW Group, the thesis deals with the analysis of the structural dynamic interactions and excitation interactions. The overarching aim of the methods project is to predict the operational vibrations of engines. Simulations are usually used to analyze technical aspects (e. g. operational vibrations, strength, ...) of single components in the industrial development. The boundary conditions of submodels are mostly based on experiences. So the interactions with neighboring components and systems are neglected. To get physically more realistic results but still efficient simulations, this work wants to support the engineer during the preprocessing phase by useful criteria. At first suitable abstraction levels based on the existing literature are defined to identify structural dynamic interactions and excitation interactions of coupled systems. So it is possible to separate different effects of the coupled subsystems. On this basis, criteria are derived to assess the influence of interactions between the considered systems. These criteria can be used during the preprocessing phase and help the engineer to build up efficient models with respect to the interactions with neighboring systems. The method was developed by using several models with different complexity levels. Furthermore, the method is proved for the application in the industrial environment by using the example of a current combustion engine. Identifikation und Separation physikalischer Effekte von gekoppelten Systemen mittels definierter Modellabstraktionen urn:nbn:de:gbv:wim2-20170314-28600 10.25643/bauhaus-universitaet.2860 Institut für Strukturmechanik (ISM) OPUS4-2744 Dissertation Peters, Simone The Influence of Power Ultrasound on Setting and Strength Development of Cement Suspensions Ein aktuelles Thema in der Forschung der Betonindustrie ist die gezielte Steuerung des Erstarrens und der Entwicklung der (Früh)Festigkeit von Betonen und Mörteln. Aus ökonomischer Sicht sind außerdem die Reduktion der CO2-Emission und die Schonung von Ressourcen und Energie wichtige Forschungsschwerpunkte. Eine Möglichkeit zum Erreichen dieser Ziele ist es, die Reaktivität/Hydratation der silikatischen Klinkerphasen gezielt anzuregen. Neben den bereits bekannten Möglichkeiten der Hydratationsbeschleunigung (u.a. Wärmebehandlung, Zugabe von Salzen) bietet die Anwendung von Power-Ultraschall (PUS) eine weitere Alternative zur Beschleunigung der Zementhydratation. Da bis zum jetzigen Zeitpunkt noch keine Erfahrungen zum Einsatz von PUS in der Zementchemie vorliegen, sollen mit der vorliegenden Arbeit grundlegende Kenntnisse zum Einfluss von PUS auf das Fließ- und Erstarrungsverhalten von Zementsuspensionen erarbeitet werden. Dazu wurde die Arbeit in fünf Hauptuntersuchungsabschnitte aufgeteilt. Im ersten Teil wurden optimale PUS-Parameter wie Amplitude und Energieeintrag ermittelt, die eine effiziente Beschleunigung der Portlandzement(CEM I)hydratation bei kurzen Beschallzeiten und begrenzter Zementleimtemperaturerhöhung erlauben. Mit Hilfe unabhängiger Untersuchungsmethoden (Bestimmung des Erstarrungsbeginns, der Festigkeitsentwicklung, zerstörungsfreier Ultraschallprüfung, isothermer Wärmeflusskalorimetrie, hochauflösender Rasterelektronmikroskopie (REM) wurde die Wirkung von PUS auf den Hydratationsverlauf von CEM I-Suspensionen charakterisiert. Die Ergebnisse zeigen, dass die Behandlung von CEM I-Suspensionen mit PUS grundsätzlich ein beschleunigtes Erstarren und eine beschleunigte (Früh)Festigkeitsentwicklung hervorruft. Anhand von REM-Untersuchungen konnte eindeutig nachgewiesen werden, dass die Beschleunigung der CEM I-Hydratation mit einer beschleunigten Hydratation der Hauptklinkerphase Alit korreliert. Auf Grundlage dieser Erkenntnisse wurden die Ursachen der Aktivierung der Alithydratation untersucht. Dazu wurden Untersuchungen an Einzelsystemen des CEM I (silikatische Klinkerphase) durchgeführt. Es ist bekannt, das die Hydratation der Hauptklinkerphase Alit (in der reinen Form Tricalciumsilikat 3CaO*SiO2; C3S) durch Lösungs-/Fällungsreaktionen (Bildung von Calcium-Silikat-Hydrat Phasen, C-S-H Phasen) bestimmt wird. Mit Hilfe von Untersuchungen zur Auflösung (C3S) und Kristallbildung (C-S-H Phasen) in Lösungen und Suspensionen (Aufzeichnung der elektrischen Leitfähigkeit sowie Bestimmung der Ionenkonzentrationen der wässrigen Phase, REM-Charakterisierung der Präzipitate) wurde die Beeinflussung dieser durch eine PUS-Behandlung charakterisiert. Die Ergebnisse zeigen, dass in partikelfreien Lösungen (primäre Keimbildung) eine PUS-Behandlung keinen Einfluss auf die Kinetik der Kristallisation von C-S-H Phasen hervorruft. Das heißt, auch die durch PUS eingetragene Energie reicht offensichtlich nicht aus, um in Abwesenheit von Oberflächen die C-S-H Phasen Bildung zu beschleunigen. Das weist darauf hin, dass die Bildung von C-S-H Phasen nicht durch eine Beschleunigung von Ionen in der Lösung (erhöhte Diffusion durch Anwendung von PUS) hervorgerufen wird. Eine Beschleunigung des Kristallisationsprozesses (Keimbildung und Wachstum von C-S-H Phasen) durch PUS wird nur in Anwesenheit von Partikeln in der Lösung (Suspension) erzielt. Das belegen Ergebnisse, bei denen die Bildung erster C-S-H Phasen bei geringer Übersättigung (heterogene Keimbildung, in Anwesenheit von Oberflächen) erfolgt. Unter diesen Bedingungen konnte gezeigt werden, dass PUS innerhalb der ersten 30 Minuten der Hydratation eine erhöhte Fällung von ersten C-S-H Phasen bewirkt. Diese fungieren dann vermutlich während der Haupthydratation als Keim bzw. geeignete Oberfläche zum beschleunigten Aufwachsen von weiteren C-S-H Phasen. Weiterhin ist vorstellbar, dass (in Analogie zu anderen Bereichen der Sonochemie) PUS durch Kavitation Schockwellen hervorruft, welche Partikel und wässriges Medium beschleunigen und damit erhöhte Partikelbewegungen und -kollisionen induziert. Dies wiederum bewirkt, dass die anfänglich auf der C3S-Oberfläche gebildeten C-S-H Phasen teilweise wieder entfernt werden. Damit ist das Inlösunggehen von Ca- und Si-Ionen aus dem C3S weiterhin möglich. Um den genauen Mechanismus weiter zu charakterisieren sollten mit geeigneten Methoden weitere Untersuchungen durchgeführt werden. Im zweiten Teil der Arbeit wurde der Einfluss von PUS auf das Fließverhalten von CEM I-Suspensionen untersucht. Aus der Anwendung von PUS in anderen technischen Bereichen sind unter anderem Effekte wie das Entlüften, das Homogenisieren und das Dispergieren von Suspensionen und Emulsionen mittels PUS bekannt. Mit Hilfe der Bestimmung des Luftporengehaltes, Sedimentationsversuchen und cryo-SEM Untersuchungen wurde der Einfluss von PUS auf CEM I-Suspensionen charakterisiert. Die Ergebnisse belegen, dass durch PUS eine verbesserte Homogenität und Dispergierung der CEM I-Suspension erzielt wird. Damit wird für CEM I-Suspensionen unterschiedlichster w/z-Werte eine verbesserte Fließfähigkeit festgestellt. Ergebnisse der Bestimmung von Ausbreitmaßen und Trichterauslaufzeiten zeigen, dass PUS einen direkten Einfluss vor allem auf die Viskosität der CEM I-Suspensionen besitzt. Werden Fließmitteln (FM) der CEM I-Suspension zugegeben, wird nicht in jedem Fall eine verbesserte Fließfähigkeit festgestellt. Hier scheint unter bestimmten Voraussetzungen (w/z-Wert, FM-Gehalt, PUS) die Reaktion zwischen Aluminat- und Sulfatphase des Klinkers gestört. Zur eindeutigen Klärung dieses Sachverhaltes bedarf es jedoch weiterer quantitativer Untersuchungen zum Reaktionsumsatz. Im dritten Teil der Arbeit wurden die am CEM I gewonnenen Erkenntnisse zum Einfluss von PUS auf die Hydratation an Portland-Hüttensand(HÜS)-Zement-Systemen verifiziert. Dafür wurden auch in diesem Teil der Arbeit zunächst die optimalen PUS-Parameter festgelegt und der Einfluss auf das Erstarrung- und Erhärtungsverhalten dokumentiert. Untersuchungsmethoden sind unter anderem die Bestimmung des Erstarrungsbeginns und der (Früh)Festigkeitsentwicklung, Temperaturaufzeichnungen und isothermale Wärmeflusskalorimetrie sowie REM. Die Ergebnisse zeigen, dass auch die Reaktion von HÜS-Zementen durch PUS beschleunigt wird. Weiterführende Untersuchungen belegen, dass die erzielte Beschleunigung vorwiegend auf der Beschleunigung der Alitkomponente des CEM I beruht. Im Fokus der Teile vier und fünf dieser Arbeit stand die Anwendbarkeit der PUS-Technik unter praktischen Bedingungen. Zum einen wurde die Anwendbarkeit von PUS in fertig gemischten Mörteln beurteilt. Anhand des Vergleichs wichtiger Frisch- und Festmörteleigenschaften unterschiedlich hergestellter Mörtel (beschallt im Anschluss an konventionelle Mischtechnik, beschallt im Anschluss an Suspensionsmischtechnik mit anschließender Zumischung der Gesteinskörnung und nicht beschallt) wird gezeigt, dass im Fall von Mörteln mit hohem Leimanteil eine durch PUS induzierte beschleunigte Festigkeitsentwicklung auch mit herkömmlichen Mischabläufen (ohne aufwendige Umstellung des Mischprozesses) möglich ist. Abschließend wird untersucht, ob der Herstellungsprozess von Wandbauteilen im Fertigteilwerk durch den Einsatz von PUS optimiert werden kann und ob eine Einbindung der PUS-Technik in den Fertigungsprozess ohne größeren Aufwand möglich ist. Dazu wurden in einem ersten Schritt die Frisch- und Festbetoneigenschaften eines aktuell angewendeten selbstverdichtenden Betons im Labormaßstab (Mörtel) in Abhängigkeit einer PUS-Behandlung dokumentiert und mit der seiner unbeschallten Referenz verglichen. Aufgrund der durch PUS verursachten verbesserten Fließ- und Festigkeitseigenschaften kann die beschallte Mörtelrezeptur hinsichtlich Fließmittelgehalt und Dauer der Wärmebehandlung optimiert werden. Somit werden ca. 30 % der Fließmittelzugabe und 40 % der Dauer der Wärmebehandlung eigespart. Eine Einbindung der PUS-Technik in das betrachtete Fertigteilwerk ist nach Überprüfung der konstruktiven Gegebenheiten der Fertigungsstrukturen ohne größeren Aufwand möglich. 146 ISBN 978-3-00-055602-9 urn:nbn:de:gbv:wim2-20170210-27446 10.25643/bauhaus-universitaet.2744 F. A. Finger-Institut für Baustoffkunde (FIB) OPUS4-2738 Wissenschaftlicher Artikel Fuchkina, Ekaterina Pedestrian Movement Graph Analysis Development of sustainable urban environments assumes processing of large amount of data from various sources. It could be field study observations, results of simulations or information provided by modeling. This paper focuses on processing modeled data of pedestrian movement based on existed axial maps of particular environment. Introduced component allows further analysis by calculation of set of metrics based on inverted graph, which is built from given paths. 2017 21 urn:nbn:de:gbv:wim2-20170202-27381 10.25643/bauhaus-universitaet.2738 Professur Informatik in der Architektur OPUS4-2737 Dissertation Schwedler, Michael Integrated structural analysis using isogeometric finite element methods The gradual digitization in the architecture, engineering, and construction industry over the past fifty years led to an extremely heterogeneous software environment, which today is embodied by the multitude of different digital tools and proprietary data formats used by the many specialists contributing to the design process in a construction project. Though these projects become increasingly complex, the demands on financial efficiency and the completion within a tight schedule grow at the same time. The digital collaboration of project partners has been identified as one key issue in successfully dealing with these challenges. Yet currently, the numerous software applications and their respective individual views on the design process severely impede that collaboration. An approach to establish a unified basis for the digital collaboration, regardless of the existing software heterogeneity, is a comprehensive digital building model contributed to by all projects partners. This type of data management known as building information modeling (BIM) has many benefits, yet its adoption is associated with many difficulties and thus, proceeds only slowly. One aspect in the field of conflicting requirements on such a digital model is the cooperation of architects and structural engineers. Traditionally, these two disciplines use different abstractions of reality for their models that in consequence lead to incompatible digital representations thereof. The onset of isogeometric analysis (IGA) promised to ease the discrepancy in design and analysis model representations. Yet, that initial focus quickly shifted towards using these methods as a more powerful basis for numerical simulations. Furthermore, the isogeometric representation alone is not capable of solving the model abstraction problem. It is thus the intention of this work to contribute to an improved digital collaboration of architects and engineers by exploring an integrated analysis approach on the basis of an unified digital model and solid geometry expressed by splines. In the course of this work, an analysis framework is developed that utilizes such models to automatically conduct numerical simulations commonly required in construction projects. In essence, this allows to retrieve structural analysis results from BIM models in a fast and simple manner, thereby facilitating rapid design iterations and profound design feedback. The BIM implementation Industry Foundation Classes (IFC) is reviewed with regard to its capabilities of representing the unified model. The current IFC schema strongly supports the use of redundant model data, a major pitfall in digital collaboration. Additionally, it does not allow to describe the geometry by volumetric splines. As the pursued approach builds upon a unique model for both, architectural and structural design, and furthermore requires solid geometry, necessary schema modifications are suggested. Structural entities are modeled by volumetric NURBS patches, each of which constitutes an individual subdomain that, with regard to the analysis, is incompatible with the remaining full model. The resulting consequences for numerical simulation are elaborated in this work. The individual subdomains have to be weakly coupled, for which the mortar method is used. Different approaches to discretize the interface traction fields are implemented and their respective impact on the analysis results is evaluated. All necessary coupling conditions are automatically derived from the related geometry model. The weak coupling procedure leads to a linear system of equations in saddle point form, which, owed to the volumetric modeling, is large in size and, the associated coefficient matrix has, due to the use of higher degree basis functions, a high bandwidth. The peculiarities of the system require adapted solution methods that generally cause higher numerical costs than the standard procedures for symmetric, positive-definite systems do. Different methods to solve the specific system are investigated and an efficient parallel algorithm is finally proposed. When the structural analysis model is derived from the unified model in the BIM data, it does in general initially not meet the requirements on the discretization that are necessary to obtain sufficiently accurate analysis results. The consequently necessary patch refinements must be controlled automatically to allowfor an entirely automatic analysis procedure. For that purpose, an empirical refinement scheme based on the geometrical and possibly mechanical properties of the specific entities is proposed. The level of refinement may be selectively manipulated by the structural engineer in charge. Furthermore, a Zienkiewicz-Zhu type error estimator is adapted for the use with isogeometric analysis results. It is shown that also this estimator can be used to steer an adaptive refinement procedure. 209 urn:nbn:de:gbv:wim2-20170130-27372 10.25643/bauhaus-universitaet.2737 Institut für Strukturmechanik (ISM)