@article{SchuchKaps, author = {Schuch, Kai and Kaps, Christian}, title = {Reifungs- und Strukturbildungsprozesse bei Bindern mit w{\"a}ssrigen Alkalisilikat-L{\"o}sungen}, doi = {10.25643/bauhaus-universitaet.3268}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170728-32682}, pages = {1 -- 17}, abstract = {Durch Reifungs- und Strukturbildungsprozesse kann es bei silikatischen und alumosilikatischen Bindern zu Rissbildung bei behinderter Verformung, Festigkeitsverlust und somit Verlust der Dauerhaftigkeit kommen. Die Bewertung dieser Prozesse erfolgt an silikatischen Materialien mit einem Ausblick auf die alumosilikatischen Binder.}, subject = {Alkalisilikat}, language = {de} } @article{SchuchKaps, author = {Schuch, Kai and Kaps, Christian}, title = {Reifungs- und Strukturbildungsprozesse bei Bindern mit w{\"a}ssrigen Alkalisilikat-L{\"o}sungen}, doi = {10.25643/bauhaus-universitaet.3267}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170718-32675}, pages = {1 -- 17}, abstract = {Durch Reifungs- und Strukturbildungsprozesse kann es bei silikatischen und alumosilikatischen Bindern zu Rissbildung bei behinderter Verformung, Festigkeitsverlust und somit Verlust der Dauerhaftigkeit kommen. Die Bewertung dieser Prozesse erfolgt an silikatischen Materialien mit einem Ausblick auf die alumosilikatischen Binder}, subject = {Alkalisilikat}, language = {de} } @phdthesis{Schneider, author = {Schneider, Jens}, title = {Untersuchungen zum Alterungsverhalten und zur Langzeitstabilit{\"a}t von Y-TZP/Al2O3-Dispersionskeramiken (ATZ) f{\"u}r die Anwendung in der H{\"u}ft-Endoprothetik}, doi = {10.25643/bauhaus-universitaet.1776}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20121130-17761}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {151}, abstract = {6 Zusammenfassung und Ausblick Die hydrothermal induzierte Phasentransformation konnte f{\"u}r ATZ-Keramik mit tiefenge-mittelten und tiefenaufgel{\"o}sten Methoden charkterisiert und quantifiziert werden. Die zeit- und temperaturabh{\"a}ngige Alterungskinetik von ATZ wurde durch neun Tempera-turstufen in einem Temperaturbereich von 50 °C bis 134 °C untersucht und die kinetischen Parameter nummerisch bestimmt. F{\"u}r 3Y-TZP wurde diese Prozedur bei drei Temperaturen im Temperaturbereich von 70 °C bis 134 °C angewendet. Aufgrund des ARRHENIUS-Verhaltens der Umwandlungskinetik konnte der zeitliche Verlauf der isotherm stattfinden-den hydrothermal induzierten Phasentransformation bei K{\"o}rpertemperatur simuliert wer-den. Die Simulation dient zur Bewertung der Langzeitstabilit{\"a}t von medizinischen Implanta-ten aus ATZ bzw. 3Y-TZP. Die Untersuchungen wurden in Wasser und in Wasserdampf bzw. wasserdampfges{\"a}ttigter Luft durchgef{\"u}hrt. Die Langzeitsimulation f{\"u}r 3Y-TZP wurde an-hand von Explantat-Untersuchungen verifiziert. ATZ zeigt gegen{\"u}ber 3Y-TZP eine h{\"o}here Alterungsstabilit{\"a}t bezogen auf die zeitliche Ent-wicklung der monoklinen Phase. Im Hinblick auf die Oberfl{\"a}chenh{\"a}rte, die durch die Pha-senumwandlung stark beeinflusst wird, erweist sich ATZ {\"u}ber einen langen Alterungszeit-raum stabiler als 3Y-TZP. Bis zu einem monoklinen Gehalt von 40 \% beweist ATZ einen deutlichen H{\"a}rtevorteil gegen{\"u}ber 3Y TZP, dieser entspricht in der Langzeitsimulation f{\"u}r die Wasserlagerung ca. 35 Jahre. Das wirkt sich insbesondere bei Verschleißpaarungen wie beim k{\"u}nstlichen H{\"u}ftgelenk positiv aus. Verschleißuntersuchungen an einer neu entwickelten Kugel-auf-Scheibe-Geometrie mit li-nearer Kinematik, die dem H{\"u}ftgelenk nachempfunden wurde, belegen die vorteilhaften Verschleißeigenschaften von ATZ in Form von sehr geringen Abtragsraten und einer intak-ten Oberfl{\"a}che nach 720 000 absolvierten Zyklen. Dabei wurde sogar eine Aufh{\"a}rtung der Oberfl{\"a}che durch die Verschleißbeanspruchung um bis zu 8 \% nachgewiesen. Bei der tiefengemittelten Charakterisierung der hydrothermalen Alterung wurde in beiden Materialtypen festgestellt, dass die Geschwindigkeit der Phasentransformation neben der Temperatur merklich von der {\"A}nderung der H2O-Stoffmengenkonzentrantion an der Ober-fl{\"a}che der Keramik abh{\"a}ngig ist, was sich mit den unterschiedlichen Aktivierungsenergien f{\"u}r Wasser- bzw. Wasserdampflagerung belegen l{\"a}sst. Die Aktivierungsenergie Ea der hyd-rothermalen Phasentransformation wurde mit Hilfe der ARRHENIUS-Beziehung ermittelt und betr{\"a}gt f{\"u}r ATZ bei Wasserdampflagerung 102 kJ/mol und bei Wasserlagerung 92 kJ/mol. F{\"u}r Y-TZP betr{\"a}gt die Aktivierungsenergie 114 kJ/mol bei Wasserdampflagerung und 102 kJ/mol bei Wasserlagerung. Der resultierende pr{\"a}exponentielle Faktor k0 unterscheidet sich f{\"u}r Wasserlagerung und Wasserdampflagerung um eine Gr{\"o}ßenordnung, was auf einen leicht andersartigen thermisch aktivierten Gesamtprozess hinweist. Der Avrami-Exponent n, der einen Hinweis auf den Mechanismus der Keimbildung sowie deren geometrische Ordnung geben kann, zeigte keine signifikante Abh{\"a}ngigkeit von der Temperatur und vom Umgebungsmedium. Er ist dagegen zeitabh{\"a}ngig und f{\"a}llt mit zuneh-mender Alterungszeit, d.h. mit zunehmendem monoklinem Gehalt von ca. 4 auf 0,5 ab, was auf eine abnehmende Keimbildungsrate hindeutet. In Verbindung mit weiteren Untersu-chungen durch unabh{\"a}ngige und zum Teil tiefenaufl{\"o}sende Methoden wie GIXRD, NRA und Knoop-Mikroh{\"a}rte-Messungen l{\"a}sst sich der Alterungsmechanismus, bzw. sein zeitlicher und {\"o}rtlicher Ablauf, durch die drei Stadien A, B und C beschreiben: A 0-5 ma. \% m-ZrO2 Quasi-homogene Keimbildung an bevorzugten Orten wie Kornkan-ten und Kornecken (n≈4), Wassertransport wahrscheinlich via Korngrenzendiffusion, Aufh{\"a}rtung der Oberfl{\"a}che B 5-40 ma. \% m-ZrO2 Keimbildung an den Korngrenzfl{\"a}chen bis zur Keims{\"a}ttigung (n≈2), monokline Randschicht w{\"a}chst zeitlich linear, Wassertransport konvektiv {\"u}ber Mikrorisse, deutlicher H{\"a}rteverlust der Oberfl{\"a}che C ≥ 40 ma. \% m-ZrO2 Wachstum der monoklinen Kristallite von den Korngrenzfl{\"a}chen in die tetragonalen Kristallite unter starker Verzwillingung (n≈0,5), Abnahme der tetragonalen Kristallitgr{\"o}ße, starke Mikrorissbildung, dramatischer R{\"u}ckgang der Oberfl{\"a}chenh{\"a}rte Die Kristallitgr{\"o}ße der monoklinen Phase verbleibt im ATZ {\"u}ber alle drei Abschnitte bei 30 ±5 nm. Ein Anwachsen der Kristallite ist mechanische behindert. Kleinere monokline Kristallite sind im ATZ thermodynamisch instabil. Die Kristallitgr{\"o}ße der tetragonalen Phase f{\"a}llt in den Abschnitten A und B sehr langsam und in C sehr schnell bis auf 25 nm ab. Bei dieser Kristallitgr{\"o}ße ist die tetragonale Phase gegen{\"u}ber der monoklinen Phase thermody-namisch stabil. Diese residualen tetragonalen Kristallite weisen nach vollst{\"a}ndigem Reakti-onsablauf einem Anteil von 7 ma. \% auf. Der S{\"a}ttigungsgehalt der monoklinen Phase betrug in beiden Materialen unabh{\"a}ngig von der Temperatur bzw. dem Umgebungsmedium 75 \% der ZrO2-Phase. In Abschnitt C besitzt die residuale tetragonale Phase eine starke Orientierung. Dadurch wird die geometrische Bedingtheit der hydrothermal induzierten Phasenumwandlung ver-deutlicht. Die monokline Phase ist {\"u}ber den gesamten Alterungsprozess stark nach m(1 1  1) orientiert, was mit einer bevorzugten Umklapprichtung der c-Achse zur freien Oberfl{\"a}che hin verbunden ist. Mit Hilfe der tiefenaufgel{\"o}sten Phasenanalyse konnte die Wachstumsgeschwindigkeit der monoklinen Randschicht von der Oberfl{\"a}che in das Volumen untersucht werden. Die Ge-schwindigkeit des Schichtwachstums ist in Abschnitt B nicht zeit- und tiefenabh{\"a}ngig, son-dern konstant mit ausgepr{\"a}gtem ARRHENIUS-Verhalten (Temperaturabh{\"a}ngigkeit). Die Akti-vierungsenergie der Schichtwachstumsgeschwindigkeit km liegt in der gleichen Gr{\"o}ßenord-nung wie die der Transformationskonstante k. Die Umwandlungszone schreitet also mit konstanter Geschwindigkeit in das Volumen fort und hinterl{\"a}sst ein verzweigtes Mikro- und Nanoriss-System. FESEM-Aufnahmen best{\"a}tigen das Vorhandensein einer por{\"o}sen Randschicht, durch die das Wasser nahezu ungehindert eindringen kann. NRA Untersuchungen deuten in Stadium A auf Korngrenzendiffusion hin und best{\"a}tigen in Stadium B einen konvektiven Transport des Wassers an die Transformationszone. Eine Dif-fusion {\"u}ber Sauerstoffleerstellen im Gitter konnte anhand von Proben aus 8YSZ nicht nach-gewiesen werden. Dagegen kommt es in dem verzweigten Riss- und Porensystem in der gealterten Randschicht zum R{\"u}cktransport des Wassers an die Oberfl{\"a}che, sobald die Pro-ben aus der hydrothermalen Atmosph{\"a}re genommen, an Luft gelagert oder in die Hochva-kuumkammer der NRA-Messapparatur eingeschleust werden. Mikrostrukturelle Untersuchungen an eigens entwickelten Verschleißpaarungen zeigten nach 720000 Zyklen {\"a}hnliche Oberfl{\"a}cheneigenschaften wie im Alterungsstadium A. Man kann daher davon ausgehen, dass die Stadien B und C aus Stabilit{\"a}tsgr{\"u}nden in der tribolo-gischen Kontaktzone nicht existieren k{\"o}nnen und es dass sich im Falle einer gleichzeitigen, hydrothermalen und tribologischen Beanspruchung um einen station{\"a}ren Alterungs- und Verschleißprozess handelt. Durch quasiplastische Deformation der monoklinen und tetra-gonalen Kristallite wird die Verschleißrate und die Abriebpartikel bei einer hart /hart Paa-rung aus ATZ deutlich minimiert, so dass ATZ f{\"u}r die H{\"u}ftendoprothetik ein durchaus geeig-neten Werkstoff darstellt, der sich auf der Grundlage der in dieser Arbeit gewonnenen Daten {\"u}ber eine Imlantationsdauer von .mehr als 15 Jahre stabil verhalten kann.}, subject = {Dispersionskeramik}, language = {de} } @phdthesis{Seiffarth, author = {Seiffarth, Torsten}, title = {Sorptionsverhalten von Cu2+ und NH4+ an Bentoniten unter Ber{\"u}cksichtigung von Nebengemengteilen sowie Struktur{\"a}nderungen nach moderater W{\"a}rmebehandlung}, doi = {10.25643/bauhaus-universitaet.1979}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20130718-19791}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {133}, abstract = {Bentonite sind quellf{\"a}hige Tone, die h{\"a}ufig in der Umwelttechnik (in Abdichtungsbauwerken oder in der Bodensanierung) eingesetzt werden. Ziel der Arbeit war die Kl{\"a}rung, wie eine unterschiedliche Kationenbelegung mit Cu2+ und NH4+ die Eigenschaften der Bentonite bei Raumtemperatur und nach moderater W{\"a}rmebehandlung (300 - 450°C) beeinflusst. Im Blickpunkt stand insbesondere die gleichzeitige Pr{\"a}senz von Kupfer- und Ammoniumionen, die als Vertreter f{\"u}r h{\"a}ufig auftretende Inhaltsstoffe von W{\"a}ssern in der Umgebung von technischen Bentoniten ausgew{\"a}hlt wurden. Die Untersuchungen zur Cu2+-Sorption bei Raumtemperatur und nach moderater W{\"a}rmebehandlung (300 - 450°C) erfolgten an Pulverproben von zwei technischen Bentoniten, die sich in der urspr{\"u}nglichen Kationenbelegung, Art und Anteil an Nebengemengteilen, sowie der Schichtladungsverteilung in den Montmorilloniten unterscheiden. Vor der W{\"a}rmebehandlung wurden die Bentonite durch Kontakt mit verschieden konzentrierten Kupfer- und Ammoniuml{\"o}sungen mit unterschiedlichen Gehalten der Kationen Cu2+, NH4+, Na+, Ca2+, Mg2+ belegt. Der Eintrag von Kupferionen in die Bentonite durch Kationenaustausch bei Raumtemperatur wurde erwartungsgem{\"a}ß durch pr{\"a}sente Nebengemengteile (wie Carbonat) beeinflusst, so dass die Kupferionen zus{\"a}tzlich spezifisch adsorbiert und in festen Phasen angereichert wurden. Die Cu2+-Fixierung infolge der W{\"a}rmebehandlung wurde vom Cu2+-Totalgehalt in den Bentoniten, der Pr{\"a}senz von Nebengemengteilen und die Schichtladungsverteilung in den Montmorilloniten beeinflusst. Es waren generell Behandlungstemperaturen von > 400°C erforderlich, um Cu2+-Fixierungsraten von > 95\% zu erzielen. Waren w{\"a}hrend der W{\"a}rmebehandlung neben Cu2+-Ionen gleichzeitig NH4+-Ionen in den Bentoniten pr{\"a}sent, konnte die Cu2+-Fixierungstemperatur herabgesetzt werden. Die Deammonisierung (NH4+ --> NH3 + H+) der NH4+-belegten Bentonite fand gr{\"o}ßtenteils unterhalb der Dehydroxylierungstemperatur der Bentonite statt. Durch Untersuchungen (XRD, FTIR, NMR, ESR) zum Mechanismus der Cu2+-Einbindung in die Bentonite an speziell aufbereiteten Proben (carbonatfrei, < 2 µm) konnte nachgewiesen werden, dass in den Cu2+-belegten Montmorilloniten die Cu2+-Ionen infolge der W{\"a}rmebehandlung nicht bis in die Oktaederschicht der Tonminerale vordringen, sondern nur bis in die Tetraederschicht wandern. In den NH4+-belegten Montmorilloniten treten im Zusammenhang mit der Deammonisierung keine zus{\"a}tzlichen Struktur{\"a}nderungen (wie Aufl{\"o}sung der Oktaederschicht) infolge der W{\"a}rmebehandlung auf.}, subject = {Bentonit}, language = {de} }