@article{Lahmer, author = {Lahmer, Tom}, title = {FEM-Based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials}, series = {IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control}, journal = {IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control}, doi = {10.25643/bauhaus-universitaet.3608}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20171030-36083}, abstract = {We propose an enhanced iterative scheme for the precise reconstruction of piezoelectric material parameters from electric impedance and mechanical displacement measurements. It is based on finite-element simulations of the full three-dimensional piezoelectric equations, combined with an inexact Newton or nonlinear Landweber iterative inversion scheme. We apply our method to two piezoelectric materials and test its performance. For the first material, the manufacturer provides a full data set; for the second one, no material data set is available. For both cases, our inverse scheme, using electric impedance measurements as input data, performs well.}, subject = {Finite-Elemente-Methode}, language = {en} } @phdthesis{Staeudel, author = {St{\"a}udel, J{\"u}rgen}, title = {Development, Implementation and Operation of Integrated Sanitation Systems Based on Material-Flows - Integrated Sanitation in the City of Darkhan, Mongolia - A Practicable Example}, doi = {10.25643/bauhaus-universitaet.3179}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170512-31794}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {The world society faces a huge challenge to implement the human right of "access to sanitation". More and more it is accepted that the conventional approach towards providing sanitation services is not suitable to solve this problem. This dissertation examines the possibility to enhance "access to sanitation" for people who are living in areas with underdeveloped water and wastewater infrastructure systems. The idea hereby is to follow an integrated approach for sanitation, which allows for a mutual completion of existing infrastructure with resource-based sanitation systems. The notion "integrated sanitation system (iSaS)" is defined in this work and guiding principles for iSaS are formulated. Further on the implementation of iSaS is assessed at the example of a case study in the city of Darkhan in Mongolia. More than half of Mongolia's population live in settlements where yurts (tents of Nomadic people) are predominant. In these settlements (or "ger areas") sanitation systems are not existent and the hygienic situation is precarious. An iSaS has been developed for the ger areas in Darkhan and tested over more than two years. Further on a software-based model has been developed with the goal to describe and assess different variations of the iSaS. The results of the assessment of material-flows, monetary-flows and communication-flows within the iSaS are presented in this dissertation. The iSaS model is adaptable and transferable to the socio-economic conditions in other regions and climate zones.}, subject = {Abwasser}, language = {en} } @phdthesis{Habtemariam, author = {Habtemariam, Abinet Kifle}, title = {Generalized Beam Theory for the analysis of thin-walled circular pipe members}, doi = {10.25643/bauhaus-universitaet.4572}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220127-45723}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {188}, abstract = {The detailed structural analysis of thin-walled circular pipe members often requires the use of a shell or solid-based finite element method. Although these methods provide a very good approximation of the deformations, they require a higher degree of discretization which causes high computational costs. On the other hand, the analysis of thin-walled circular pipe members based on classical beam theories is easy to implement and needs much less computation time, however, they are limited in their ability to approximate the deformations as they cannot consider the deformation of the cross-section. This dissertation focuses on the study of the Generalized Beam Theory (GBT) which is both accurate and efficient in analyzing thin-walled members. This theory is based on the separation of variables in which the displacement field is expressed as a combination of predetermined deformation modes related to the cross-section, and unknown amplitude functions defined on the beam's longitudinal axis. Although the GBT was initially developed for long straight members, through the consideration of complementary deformation modes, which amend the null transverse and shear membrane strain assumptions of the classical GBT, problems involving short members, pipe bends, and geometrical nonlinearity can also be analyzed using GBT. In this dissertation, the GBT formulation for the analysis of these problems is developed and the application and capabilities of the method are illustrated using several numerical examples. Furthermore, the displacement and stress field results of these examples are verified using an equivalent refined shell-based finite element model. The developed static and dynamic GBT formulations for curved thin-walled circular pipes are based on the linear kinematic description of the curved shell theory. In these formulations, the complex problem in pipe bends due to the strong coupling effect of the longitudinal bending, warping and the cross-sectional ovalization is handled precisely through the derivation of the coupling tensors between the considered GBT deformation modes. Similarly, the geometrically nonlinear GBT analysis is formulated for thin-walled circular pipes based on the nonlinear membrane kinematic equations. Here, the initial linear and quadratic stress and displacement tangent stiffness matrices are built using the third and fourth-order GBT deformation mode coupling tensors. Longitudinally, the formulation of the coupled GBT element stiffness and mass matrices are presented using a beam-based finite element formulation. Furthermore, the formulated GBT elements are tested for shear and membrane locking problems and the limitations of the formulations regarding the membrane locking problem are discussed.}, subject = {Finite-Elemente-Methode}, language = {en} }