@article{Lahmer, author = {Lahmer, Tom}, title = {FEM-Based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials}, series = {IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control}, journal = {IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control}, doi = {10.25643/bauhaus-universitaet.3608}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20171030-36083}, abstract = {We propose an enhanced iterative scheme for the precise reconstruction of piezoelectric material parameters from electric impedance and mechanical displacement measurements. It is based on finite-element simulations of the full three-dimensional piezoelectric equations, combined with an inexact Newton or nonlinear Landweber iterative inversion scheme. We apply our method to two piezoelectric materials and test its performance. For the first material, the manufacturer provides a full data set; for the second one, no material data set is available. For both cases, our inverse scheme, using electric impedance measurements as input data, performs well.}, subject = {Finite-Elemente-Methode}, language = {en} } @article{ChenSchwingKarlovšeketal., author = {Chen, Zhen and Schwing, Moritz and Karlovšek, Jurij and Wagner, Norman and Scheuermann, Alexander}, title = {Broadband Dielectric Measurement Methods for Soft Geomaterials: Coaxial Transmission Line Cell and Open-Ended Coaxial Probe}, series = {International Journal of Engineering and Technology}, volume = {2014}, journal = {International Journal of Engineering and Technology}, number = {volume 6, number 5}, doi = {10.7763/IJET.2014.V6.728}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210408-43984}, pages = {373 -- 380}, abstract = {Broadband dielectric measurement methods based on vector network analyzer coupled with coaxial transmission line cell (CC) and open-ended coaxial probe (OC) are simply reviewed, by which the dielectric behaviors in the frequency range of 1 MHz to 3 GHz of two practical geomaterials are investigated. Kaolin after modified compaction with different water contents is measured by using CC. The results are consistent with previous study on standardized compacted kaolin and suggest that the dielectric properties at frequencies below 100 MHz are not only a function of water content but also functions of other soil state parameters including dry density. The hydration process of a commercial grout is monitored in real time by using OC. It is found that the time dependent dielectric properties can accurately reveal the different stages of the hydration process. These measurement results demonstrate the practicability of the introduced methods in determining dielectric properties of soft geomaterials.}, subject = {Impedanzspektroskopie}, language = {en} } @article{KapsSchuchStaeblein, author = {Kaps, Christian and Schuch, Kai and St{\"a}blein, Stefan}, title = {Silicate coatings for concrete components with waterglass systems by means of neutral salt initiation}, doi = {10.25643/bauhaus-universitaet.2588}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160601-25888}, pages = {1 -- 14}, abstract = {The objective of the investigations was the proof of the use of the neutral salt initiation as a construction material in the protecting silicate coating of concrete components, e.g. factory finished parts or reinforced concrete construction parts, by means of waterglass fused silica suspensions}, subject = {Silicate}, language = {en} } @article{Dressel, author = {Dressel, Dennys}, title = {Reaktivit{\"a}t von H{\"u}ttensand : Thermodynamische Grundlagen und Anwendung}, doi = {10.25643/bauhaus-universitaet.2677}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160829-26778}, pages = {178}, abstract = {Die thermodynamischen Grundlagen der Hydratation von H{\"u}ttensand als Hauptbestandteil von Zementen werden erforscht. Hierbei werden thermodynamische Bildungs- und Reaktionsdaten experimentell bestimmt und berechnet. Dar{\"u}ber hinaus wird der Prozess der Feststoffaufl{\"o}sung von H{\"u}ttensand in w{\"a}ssrigen L{\"o}sungen untersucht. L{\"o}sungs- und F{\"a}llungsprozesse werden unter verschiedenen Konditionen gemessen, ausgewertet und diskutiert. Die Ergebnisse werden im weiteren Verlauf zur Bestimmung der Hydratationsgrades in Pasten sowie zum besseren Verst{\"a}ndnis in der Wechselwirkung zwischen H{\"u}ttensanden und Mahlhilfsstoffen genutzt und angewandt.}, subject = {H{\"u}ttensand}, language = {de} } @article{SchuchKaps, author = {Schuch, Kai and Kaps, Christian}, title = {Maturation and Structure Formation Processes in Binders with Aqueous Alkali-Silicate Solutions}, doi = {10.25643/bauhaus-universitaet.3597}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170907-35979}, pages = {1 -- 16}, abstract = {Maturation and structure formation processes can lead to crack formation in silicate and aluminosilicate binders (e.g. for coating materials...) through restricted deformation, loss of strength and thus to loss of durability. These processes are evaluated with silicate materials with an outlook on aluminosilicate binders.}, subject = {Waterglass}, language = {en} } @article{GhazvineiDarvishiMosavietal., author = {Ghazvinei, Pezhman Taherei and Darvishi, Hossein Hassanpour and Mosavi, Amir and Yusof, Khamaruzaman bin Wan and Alizamir, Meysam and Shamshirband, Shahaboddin and Chau, Kwok-Wing}, title = {Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network}, series = {Engineering Applications of Computational Fluid Mechanics}, volume = {2018}, journal = {Engineering Applications of Computational Fluid Mechanics}, number = {12,1}, publisher = {Taylor \& Francis}, doi = {10.1080/19942060.2018.1526119}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181017-38129}, pages = {738 -- 749}, abstract = {Management strategies for sustainable sugarcane production need to deal with the increasing complexity and variability of the whole sugar system. Moreover, they need to accommodate the multiple goals of different industry sectors and the wider community. Traditional disciplinary approaches are unable to provide integrated management solutions, and an approach based on whole systems analysis is essential to bring about beneficial change to industry and the community. The application of this approach to water management, environmental management and cane supply management is outlined, where the literature indicates that the application of extreme learning machine (ELM) has never been explored in this realm. Consequently, the leading objective of the current research was set to filling this gap by applying ELM to launch swift and accurate model for crop production data-driven. The key learning has been the need for innovation both in the technical aspects of system function underpinned by modelling of sugarcane growth. Therefore, the current study is an attempt to establish an integrate model using ELM to predict the concluding growth amount of sugarcane. Prediction results were evaluated and further compared with artificial neural network (ANN) and genetic programming models. Accuracy of the ELM model is calculated using the statistics indicators of Root Means Square Error (RMSE), Pearson Coefficient (r), and Coefficient of Determination (R2) with promising results of 0.8, 0.47, and 0.89, respectively. The results also show better generalization ability in addition to faster learning curve. Thus, proficiency of the ELM for supplementary work on advancement of prediction model for sugarcane growth was approved with promising results.}, subject = {K{\"u}nstliche Intelligenz}, language = {en} } @article{FaizollahzadehArdabiliNajafiAlizamiretal., author = {Faizollahzadeh Ardabili, Sina and Najafi, Bahman and Alizamir, Meysam and Mosavi, Amir and Shamshirband, Shahaboddin and Rabczuk, Timon}, title = {Using SVM-RSM and ELM-RSM Approaches for Optimizing the Production Process of Methyl and Ethyl Esters}, series = {Energies}, journal = {Energies}, number = {11, 2889}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/en11112889}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181025-38170}, pages = {1 -- 20}, abstract = {The production of a desired product needs an effective use of the experimental model. The present study proposes an extreme learning machine (ELM) and a support vector machine (SVM) integrated with the response surface methodology (RSM) to solve the complexity in optimization and prediction of the ethyl ester and methyl ester production process. The novel hybrid models of ELM-RSM and ELM-SVM are further used as a case study to estimate the yield of methyl and ethyl esters through a trans-esterification process from waste cooking oil (WCO) based on American Society for Testing and Materials (ASTM) standards. The results of the prediction phase were also compared with artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS), which were recently developed by the second author of this study. Based on the results, an ELM with a correlation coefficient of 0.9815 and 0.9863 for methyl and ethyl esters, respectively, had a high estimation capability compared with that for SVM, ANNs, and ANFIS. Accordingly, the maximum production yield was obtained in the case of using ELM-RSM of 96.86\% for ethyl ester at a temperature of 68.48 °C, a catalyst value of 1.15 wt. \%, mixing intensity of 650.07 rpm, and an alcohol to oil molar ratio (A/O) of 5.77; for methyl ester, the production yield was 98.46\% at a temperature of 67.62 °C, a catalyst value of 1.1 wt. \%, mixing intensity of 709.42 rpm, and an A/O of 6.09. Therefore, ELM-RSM increased the production yield by 3.6\% for ethyl ester and 3.1\% for methyl ester, compared with those for the experimental data.}, subject = {Biodiesel}, language = {en} } @article{MorgenthalEickRauetal., author = {Morgenthal, Guido and Eick, Jan Frederick and Rau, Sebastian and Taraben, Jakob}, title = {Wireless Sensor Networks Composed of Standard Microcomputers and Smartphones for Applications in Structural Health Monitoring}, series = {Sensors - Special Issue Selected Papers from 7th Asia-Pacific Workshop on Structural Health Monitoring}, volume = {2019}, journal = {Sensors - Special Issue Selected Papers from 7th Asia-Pacific Workshop on Structural Health Monitoring}, number = {Volume 19, Issue 9, 2070}, publisher = {MDPI}, doi = {10.3390/s19092070}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20190514-39123}, pages = {22}, abstract = {Wireless sensor networks have attracted great attention for applications in structural health monitoring due to their ease of use, flexibility of deployment, and cost-effectiveness. This paper presents a software framework for WiFi-based wireless sensor networks composed of low-cost mass market single-board computers. A number of specific system-level software components were developed to enable robust data acquisition, data processing, sensor network communication, and timing with a focus on structural health monitoring (SHM) applications. The framework was validated on Raspberry Pi computers, and its performance was studied in detail. The paper presents several characteristics of the measurement quality such as sampling accuracy and time synchronization and discusses the specific limitations of the system. The implementation includes a complementary smartphone application that is utilized for data acquisition, visualization, and analysis. A prototypical implementation further demonstrates the feasibility of integrating smartphones as data acquisition nodes into the network, utilizing their internal sensors. The measurement system was employed in several monitoring campaigns, three of which are documented in detail. The suitability of the system is evaluated based on comparisons of target quantities with reference measurements. The results indicate that the presented system can robustly achieve a measurement performance commensurate with that required in many typical SHM tasks such as modal identification. As such, it represents a cost-effective alternative to more traditional monitoring solutions.}, subject = {Structural Health Monitoring}, language = {en} } @article{KavrakovLegatiukGuerlebecketal., author = {Kavrakov, Igor and Legatiuk, Dmitrii and G{\"u}rlebeck, Klaus and Morgenthal, Guido}, title = {A categorical perspective towards aerodynamic models for aeroelastic analyses of bridge decks}, series = {Royal Society Open Science}, journal = {Royal Society Open Science}, number = {Volume 6, Issue 3}, doi = {/10.1098/rsos.181848}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20190314-38656}, pages = {20}, abstract = {Reliable modelling in structural engineering is crucial for the serviceability and safety of structures. A huge variety of aerodynamic models for aeroelastic analyses of bridges poses natural questions on their complexity and thus, quality. Moreover, a direct comparison of aerodynamic models is typically either not possible or senseless, as the models can be based on very different physical assumptions. Therefore, to address the question of principal comparability and complexity of models, a more abstract approach, accounting for the effect of basic physical assumptions, is necessary. This paper presents an application of a recently introduced category theory-based modelling approach to a diverse set of models from bridge aerodynamics. Initially, the categorical approach is extended to allow an adequate description of aerodynamic models. Complexity of the selected aerodynamic models is evaluated, based on which model comparability is established. Finally, the utility of the approach for model comparison and characterisation is demonstrated on an illustrative example from bridge aeroelasticity. The outcome of this study is intended to serve as an alternative framework for model comparison and impact future model assessment studies of mathematical models for engineering applications.}, subject = {Br{\"u}cke}, language = {en} } @article{SadeghzadehMaddahAhmadietal., author = {Sadeghzadeh, Milad and Maddah, Heydar and Ahmadi, Mohammad Hossein and Khadang, Amirhosein and Ghazvini, Mahyar and Mosavi, Amir Hosein and Nabipour, Narjes}, title = {Prediction of Thermo-Physical Properties of TiO2-Al2O3/Water Nanoparticles by Using Artificial Neural Network}, series = {Nanomaterials}, volume = {2020}, journal = {Nanomaterials}, number = {Volume 10, Issue 4, 697}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/nano10040697}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200421-41308}, abstract = {In this paper, an artificial neural network is implemented for the sake of predicting the thermal conductivity ratio of TiO2-Al2O3/water nanofluid. TiO2-Al2O3/water in the role of an innovative type of nanofluid was synthesized by the sol-gel method. The results indicated that 1.5 vol.\% of nanofluids enhanced the thermal conductivity by up to 25\%. It was shown that the heat transfer coefficient was linearly augmented with increasing nanoparticle concentration, but its variation with temperature was nonlinear. It should be noted that the increase in concentration may cause the particles to agglomerate, and then the thermal conductivity is reduced. The increase in temperature also increases the thermal conductivity, due to an increase in the Brownian motion and collision of particles. In this research, for the sake of predicting the thermal conductivity of TiO2-Al2O3/water nanofluid based on volumetric concentration and temperature functions, an artificial neural network is implemented. In this way, for predicting thermal conductivity, SOM (self-organizing map) and BP-LM (Back Propagation-Levenberq-Marquardt) algorithms were used. Based on the results obtained, these algorithms can be considered as an exceptional tool for predicting thermal conductivity. Additionally, the correlation coefficient values were equal to 0.938 and 0.98 when implementing the SOM and BP-LM algorithms, respectively, which is highly acceptable. View Full-Text}, subject = {W{\"a}rmeleitf{\"a}higkeit}, language = {en} }