@article{GhazvineiDarvishiMosavietal., author = {Ghazvinei, Pezhman Taherei and Darvishi, Hossein Hassanpour and Mosavi, Amir and Yusof, Khamaruzaman bin Wan and Alizamir, Meysam and Shamshirband, Shahaboddin and Chau, Kwok-Wing}, title = {Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network}, series = {Engineering Applications of Computational Fluid Mechanics}, volume = {2018}, journal = {Engineering Applications of Computational Fluid Mechanics}, number = {12,1}, publisher = {Taylor \& Francis}, doi = {10.1080/19942060.2018.1526119}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181017-38129}, pages = {738 -- 749}, abstract = {Management strategies for sustainable sugarcane production need to deal with the increasing complexity and variability of the whole sugar system. Moreover, they need to accommodate the multiple goals of different industry sectors and the wider community. Traditional disciplinary approaches are unable to provide integrated management solutions, and an approach based on whole systems analysis is essential to bring about beneficial change to industry and the community. The application of this approach to water management, environmental management and cane supply management is outlined, where the literature indicates that the application of extreme learning machine (ELM) has never been explored in this realm. Consequently, the leading objective of the current research was set to filling this gap by applying ELM to launch swift and accurate model for crop production data-driven. The key learning has been the need for innovation both in the technical aspects of system function underpinned by modelling of sugarcane growth. Therefore, the current study is an attempt to establish an integrate model using ELM to predict the concluding growth amount of sugarcane. Prediction results were evaluated and further compared with artificial neural network (ANN) and genetic programming models. Accuracy of the ELM model is calculated using the statistics indicators of Root Means Square Error (RMSE), Pearson Coefficient (r), and Coefficient of Determination (R2) with promising results of 0.8, 0.47, and 0.89, respectively. The results also show better generalization ability in addition to faster learning curve. Thus, proficiency of the ELM for supplementary work on advancement of prediction model for sugarcane growth was approved with promising results.}, subject = {K{\"u}nstliche Intelligenz}, language = {en} } @article{FaizollahzadehArdabiliNajafiAlizamiretal., author = {Faizollahzadeh Ardabili, Sina and Najafi, Bahman and Alizamir, Meysam and Mosavi, Amir and Shamshirband, Shahaboddin and Rabczuk, Timon}, title = {Using SVM-RSM and ELM-RSM Approaches for Optimizing the Production Process of Methyl and Ethyl Esters}, series = {Energies}, journal = {Energies}, number = {11, 2889}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/en11112889}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181025-38170}, pages = {1 -- 20}, abstract = {The production of a desired product needs an effective use of the experimental model. The present study proposes an extreme learning machine (ELM) and a support vector machine (SVM) integrated with the response surface methodology (RSM) to solve the complexity in optimization and prediction of the ethyl ester and methyl ester production process. The novel hybrid models of ELM-RSM and ELM-SVM are further used as a case study to estimate the yield of methyl and ethyl esters through a trans-esterification process from waste cooking oil (WCO) based on American Society for Testing and Materials (ASTM) standards. The results of the prediction phase were also compared with artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS), which were recently developed by the second author of this study. Based on the results, an ELM with a correlation coefficient of 0.9815 and 0.9863 for methyl and ethyl esters, respectively, had a high estimation capability compared with that for SVM, ANNs, and ANFIS. Accordingly, the maximum production yield was obtained in the case of using ELM-RSM of 96.86\% for ethyl ester at a temperature of 68.48 °C, a catalyst value of 1.15 wt. \%, mixing intensity of 650.07 rpm, and an alcohol to oil molar ratio (A/O) of 5.77; for methyl ester, the production yield was 98.46\% at a temperature of 67.62 °C, a catalyst value of 1.1 wt. \%, mixing intensity of 709.42 rpm, and an A/O of 6.09. Therefore, ELM-RSM increased the production yield by 3.6\% for ethyl ester and 3.1\% for methyl ester, compared with those for the experimental data.}, subject = {Biodiesel}, language = {en} } @article{SaadatfarKhosraviHassannatajJoloudarietal., author = {Saadatfar, Hamid and Khosravi, Samiyeh and Hassannataj Joloudari, Javad and Mosavi, Amir and Shamshirband, Shahaboddin}, title = {A New K-Nearest Neighbors Classifier for Big Data Based on Efficient Data Pruning}, series = {Mathematics}, volume = {2020}, journal = {Mathematics}, number = {volume 8, issue 2, article 286}, publisher = {MDPI}, doi = {10.3390/math8020286}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200225-40996}, pages = {12}, abstract = {The K-nearest neighbors (KNN) machine learning algorithm is a well-known non-parametric classification method. However, like other traditional data mining methods, applying it on big data comes with computational challenges. Indeed, KNN determines the class of a new sample based on the class of its nearest neighbors; however, identifying the neighbors in a large amount of data imposes a large computational cost so that it is no longer applicable by a single computing machine. One of the proposed techniques to make classification methods applicable on large datasets is pruning. LC-KNN is an improved KNN method which first clusters the data into some smaller partitions using the K-means clustering method; and then applies the KNN for each new sample on the partition which its center is the nearest one. However, because the clusters have different shapes and densities, selection of the appropriate cluster is a challenge. In this paper, an approach has been proposed to improve the pruning phase of the LC-KNN method by taking into account these factors. The proposed approach helps to choose a more appropriate cluster of data for looking for the neighbors, thus, increasing the classification accuracy. The performance of the proposed approach is evaluated on different real datasets. The experimental results show the effectiveness of the proposed approach and its higher classification accuracy and lower time cost in comparison to other recent relevant methods.}, subject = {Maschinelles Lernen}, language = {en} } @article{ShamshirbandBabanezhadMosavietal., author = {Shamshirband, Shahaboddin and Babanezhad, Meisam and Mosavi, Amir and Nabipour, Narjes and Hajnal, Eva and Nadai, Laszlo and Chau, Kwok-Wing}, title = {Prediction of flow characteristics in the bubble column reactor by the artificial pheromone-based communication of biological ants}, series = {Engineering Applications of Computational Fluid Mechanics}, volume = {2020}, journal = {Engineering Applications of Computational Fluid Mechanics}, number = {volume 14, issue 1}, publisher = {Taylor \& Francis}, doi = {10.1080/19942060.2020.1715842}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200227-41013}, pages = {367 -- 378}, abstract = {A novel combination of the ant colony optimization algorithm (ACO)and computational fluid dynamics (CFD) data is proposed for modeling the multiphase chemical reactors. The proposed intelligent model presents a probabilistic computational strategy for predicting various levels of three-dimensional bubble column reactor (BCR) flow. The results prove an enhanced communication between ant colony prediction and CFD data in different sections of the BCR.}, subject = {Maschinelles Lernen}, language = {en} } @article{AmirinasabShamshirbandChronopoulosetal., author = {Amirinasab, Mehdi and Shamshirband, Shahaboddin and Chronopoulos, Anthony Theodore and Mosavi, Amir and Nabipour, Narjes}, title = {Energy-Efficient Method for Wireless Sensor Networks Low-Power Radio Operation in Internet of Things}, series = {electronics}, volume = {2020}, journal = {electronics}, number = {volume 9, issue 2, 320}, publisher = {MDPI}, doi = {10.3390/electronics9020320}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200213-40954}, pages = {20}, abstract = {The radio operation in wireless sensor networks (WSN) in Internet of Things (IoT)applications is the most common source for power consumption. Consequently, recognizing and controlling the factors affecting radio operation can be valuable for managing the node power consumption. Among essential factors affecting radio operation, the time spent for checking the radio is of utmost importance for monitoring power consumption. It can lead to false WakeUp or idle listening in radio duty cycles and ContikiMAC. ContikiMAC is a low-power radio duty-cycle protocol in Contiki OS used in WakeUp mode, as a clear channel assessment (CCA) for checking radio status periodically. This paper presents a detailed analysis of radio WakeUp time factors of ContikiMAC. Furthermore, we propose a lightweight CCA (LW-CCA) as an extension to ContikiMAC to reduce the Radio Duty-Cycles in false WakeUps and idle listening though using dynamic received signal strength indicator (RSSI) status check time. The simulation results in the Cooja simulator show that LW-CCA reduces about 8\% energy consumption in nodes while maintaining up to 99\% of the packet delivery rate (PDR).}, subject = {Internet der Dinge}, language = {en} } @article{NabipourDehghaniMosavietal., author = {Nabipour, Narjes and Dehghani, Majid and Mosavi, Amir and Shamshirband, Shahaboddin}, title = {Short-Term Hydrological Drought Forecasting Based on Different Nature-Inspired Optimization Algorithms Hybridized With Artificial Neural Networks}, series = {IEEE Access}, volume = {2020}, journal = {IEEE Access}, number = {volume 8}, publisher = {IEEE}, doi = {10.1109/ACCESS.2020.2964584}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200213-40796}, pages = {15210 -- 15222}, abstract = {Hydrological drought forecasting plays a substantial role in water resources management. Hydrological drought highly affects the water allocation and hydropower generation. In this research, short term hydrological drought forecasted based on the hybridized of novel nature-inspired optimization algorithms and Artificial Neural Networks (ANN). For this purpose, the Standardized Hydrological Drought Index (SHDI) and the Standardized Precipitation Index (SPI) were calculated in one, three, and six aggregated months. Then, three states where proposed for SHDI forecasting, and 36 input-output combinations were extracted based on the cross-correlation analysis. In the next step, newly proposed optimization algorithms, including Grasshopper Optimization Algorithm (GOA), Salp Swarm algorithm (SSA), Biogeography-based optimization (BBO), and Particle Swarm Optimization (PSO) hybridized with the ANN were utilized for SHDI forecasting and the results compared to the conventional ANN. Results indicated that the hybridized model outperformed compared to the conventional ANN. PSO performed better than the other optimization algorithms. The best models forecasted SHDI1 with R2 = 0.68 and RMSE = 0.58, SHDI3 with R 2 = 0.81 and RMSE = 0.45 and SHDI6 with R 2 = 0.82 and RMSE = 0.40.}, subject = {Maschinelles Lernen}, language = {en} } @article{MousaviSteinkeJuniorTeixeiraetal., author = {Mousavi, Seyed Nasrollah and Steinke J{\´u}nior, Renato and Teixeira, Eder Daniel and Bocchiola, Daniele and Nabipour, Narjes and Mosavi, Amir and Shamshirband, Shahaboddin}, title = {Predictive Modeling the Free Hydraulic Jumps Pressure through Advanced Statistical Methods}, series = {Mathematics}, volume = {2020}, journal = {Mathematics}, number = {Volume 8, Issue 3, 323}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/math8030323}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200402-41140}, pages = {16}, abstract = {Pressure fluctuations beneath hydraulic jumps potentially endanger the stability of stilling basins. This paper deals with the mathematical modeling of the results of laboratory-scale experiments to estimate the extreme pressures. Experiments were carried out on a smooth stilling basin underneath free hydraulic jumps downstream of an Ogee spillway. From the probability distribution of measured instantaneous pressures, pressures with different probabilities could be determined. It was verified that maximum pressure fluctuations, and the negative pressures, are located at the positions near the spillway toe. Also, minimum pressure fluctuations are located at the downstream of hydraulic jumps. It was possible to assess the cumulative curves of pressure data related to the characteristic points along the basin, and different Froude numbers. To benchmark the results, the dimensionless forms of statistical parameters include mean pressures (P*m), the standard deviations of pressure fluctuations (σ*X), pressures with different non-exceedance probabilities (P*k\%), and the statistical coefficient of the probability distribution (Nk\%) were assessed. It was found that an existing method can be used to interpret the present data, and pressure distribution in similar conditions, by using a new second-order fractional relationships for σ*X, and Nk\%. The values of the Nk\% coefficient indicated a single mean value for each probability.}, subject = {Maschinelles Lernen}, language = {en} }