@phdthesis{Abeltshauser, author = {Abeltshauser, Rainer}, title = {Identification and separation of physical effects of coupled systems by using defined model abstractions}, doi = {10.25643/bauhaus-universitaet.2860}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28600}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {The thesis investigates at the computer aided simulation process for operational vibration analysis of complex coupled systems. As part of the internal methods project "Absolute Values" of the BMW Group, the thesis deals with the analysis of the structural dynamic interactions and excitation interactions. The overarching aim of the methods project is to predict the operational vibrations of engines. Simulations are usually used to analyze technical aspects (e. g. operational vibrations, strength, ...) of single components in the industrial development. The boundary conditions of submodels are mostly based on experiences. So the interactions with neighboring components and systems are neglected. To get physically more realistic results but still efficient simulations, this work wants to support the engineer during the preprocessing phase by useful criteria. At first suitable abstraction levels based on the existing literature are defined to identify structural dynamic interactions and excitation interactions of coupled systems. So it is possible to separate different effects of the coupled subsystems. On this basis, criteria are derived to assess the influence of interactions between the considered systems. These criteria can be used during the preprocessing phase and help the engineer to build up efficient models with respect to the interactions with neighboring systems. The method was developed by using several models with different complexity levels. Furthermore, the method is proved for the application in the industrial environment by using the example of a current combustion engine.}, subject = {Strukturdynamik}, language = {en} } @phdthesis{AbuBakar, author = {Abu Bakar, Ilyani Akmar}, title = {Computational Analysis of Woven Fabric Composites: Single- and Multi-Objective Optimizations and Sensitivity Analysis in Meso-scale Structures}, issn = {1610-7381}, doi = {10.25643/bauhaus-universitaet.4176}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200605-41762}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {151}, abstract = {This study permits a reliability analysis to solve the mechanical behaviour issues existing in the current structural design of fabric structures. Purely predictive material models are highly desirable to facilitate an optimized design scheme and to significantly reduce time and cost at the design stage, such as experimental characterization. The present study examined the role of three major tasks; a) single-objective optimization, b) sensitivity analyses and c) multi-objective optimization on proposed weave structures for woven fabric composites. For single-objective optimization task, the first goal is to optimize the elastic properties of proposed complex weave structure under unit cells basis based on periodic boundary conditions. We predict the geometric characteristics towards skewness of woven fabric composites via Evolutionary Algorithm (EA) and a parametric study. We also demonstrate the effect of complex weave structures on the fray tendency in woven fabric composites via tightness evaluation. We utilize a procedure which does not require a numerical averaging process for evaluating the elastic properties of woven fabric composites. The fray tendency and skewness of woven fabrics depends upon the behaviour of the floats which is related to the factor of weave. Results of this study may suggest a broader view for further research into the effects of complex weave structures or may provide an alternative to the fray and skewness problems of current weave structure in woven fabric composites. A comprehensive study is developed on the complex weave structure model which adopts the dry woven fabric of the most potential pattern in singleobjective optimization incorporating the uncertainties parameters of woven fabric composites. The comprehensive study covers the regression-based and variance-based sensitivity analyses. The second task goal is to introduce the fabric uncertainties parameters and elaborate how they can be incorporated into finite element models on macroscopic material parameters such as elastic modulus and shear modulus of dry woven fabric subjected to uni-axial and biaxial deformations. Significant correlations in the study, would indicate the need for a thorough investigation of woven fabric composites under uncertainties parameters. The study describes here could serve as an alternative to identify effective material properties without prolonged time consumption and expensive experimental tests. The last part focuses on a hierarchical stochastic multi-scale optimization approach (fine-scale and coarse-scale optimizations) under geometrical uncertainties parameters for hybrid composites considering complex weave structure. The fine-scale optimization is to determine the best lamina pattern that maximizes its macroscopic elastic properties, conducted by EA under the following uncertain mesoscopic parameters: yarn spacing, yarn height, yarn width and misalignment of yarn angle. The coarse-scale optimization has been carried out to optimize the stacking sequences of symmetric hybrid laminated composite plate with uncertain mesoscopic parameters by employing the Ant Colony Algorithm (ACO). The objective functions of the coarse-scale optimization are to minimize the cost (C) and weight (W) of the hybrid laminated composite plate considering the fundamental frequency and the buckling load factor as the design constraints. Based on the uncertainty criteria of the design parameters, the appropriate variation required for the structural design standards can be evaluated using the reliability tool, and then an optimized design decision in consideration of cost can be subsequently determined.}, subject = {Verbundwerkstoff}, language = {en} } @article{AlYasiriMutasharGuerlebecketal., author = {Al-Yasiri, Zainab Riyadh Shaker and Mutashar, Hayder Majid and G{\"u}rlebeck, Klaus and Lahmer, Tom}, title = {Damage Sensitive Signals for the Assessment of the Conditions of Wind Turbine Rotor Blades Using Electromagnetic Waves}, series = {Infrastructures}, volume = {2022}, journal = {Infrastructures}, number = {Volume 7, Issue 8 (August 2022), article 104}, editor = {Shafiullah, GM}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/infrastructures7080104}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220831-47093}, pages = {18}, abstract = {One of the most important renewable energy technologies used nowadays are wind power turbines. In this paper, we are interested in identifying the operating status of wind turbines, especially rotor blades, by means of multiphysical models. It is a state-of-the-art technology to test mechanical structures with ultrasonic-based methods. However, due to the density and the required high resolution, the testing is performed with high-frequency waves, which cannot penetrate the structure in depth. Therefore, there is a need to adopt techniques in the fields of multiphysical model-based inversion schemes or data-driven structural health monitoring. Before investing effort in the development of such approaches, further insights and approaches are necessary to make the techniques applicable to structures such as wind power plants (blades). Among the expected developments, further accelerations of the so-called "forward codes" for a more efficient implementation of the wave equation could be envisaged. Here, we employ electromagnetic waves for the early detection of cracks. Because in many practical situations, it is not possible to apply techniques from tomography (characterized by multiple sources and sensor pairs), we focus here on the question of whether the existence of cracks can be determined by using only one source for the sent waves.}, subject = {Windkraftwerk}, language = {en} } @misc{Alabassy, type = {Master Thesis}, author = {Alabassy, Mohamed Said Helmy}, title = {Automated Approach for Building Information Modelling of Crack Damages via Image Segmentation and Image-based 3D Reconstruction}, doi = {10.25643/bauhaus-universitaet.6416}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230818-64162}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {101}, abstract = {As machine vision-based inspection methods in the field of Structural Health Monitoring (SHM) continue to advance, the need for integrating resulting inspection and maintenance data into a centralised building information model for structures notably grows. Consequently, the modelling of found damages based on those images in a streamlined automated manner becomes increasingly important, not just for saving time and money spent on updating the model to include the latest information gathered through each inspection, but also to easily visualise them, provide all stakeholders involved with a comprehensive digital representation containing all the necessary information to fully understand the structure's current condition, keep track of any progressing deterioration, estimate the reduced load bearing capacity of the damaged element in the model or simulate the propagation of cracks to make well-informed decisions interactively and facilitate maintenance actions that optimally extend the service life of the structure. Though significant progress has been recently made in information modelling of damages, the current devised methods for the geometrical modelling approach are cumbersome and time consuming to implement in a full-scale model. For crack damages, an approach for a feasible automated image-based modelling is proposed utilising neural networks, classical computer vision and computational geometry techniques with the aim of creating valid shapes to be introduced into the information model, including related semantic properties and attributes from inspection data (e.g., width, depth, length, date, etc.). The creation of such models opens the door for further possible uses ranging from more accurate structural analysis possibilities to simulation of damage propagation in model elements, estimating deterioration rates and allows for better documentation, data sharing, and realistic visualisation of damages in a 3D model.}, subject = {Building Information Modeling}, language = {en} } @phdthesis{Alkam, author = {Alkam, Feras}, title = {Vibration-based Monitoring of Concrete Catenary Poles using Bayesian Inference}, volume = {2021}, publisher = {Bauhaus-Universit{\"a}tsverlag}, address = {Weimar}, doi = {10.25643/bauhaus-universitaet.4433}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210526-44338}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {177}, abstract = {This work presents a robust status monitoring approach for detecting damage in cantilever structures based on logistic functions. Also, a stochastic damage identification approach based on changes of eigenfrequencies is proposed. The proposed algorithms are verified using catenary poles of electrified railways track. The proposed damage features overcome the limitation of frequency-based damage identification methods available in the literature, which are valid to detect damage in structures to Level 1 only. Changes in eigenfrequencies of cantilever structures are enough to identify possible local damage at Level 3, i.e., to cover damage detection, localization, and quantification. The proposed algorithms identified the damage with relatively small errors, even at a high noise level.}, subject = {Parameteridentifikation}, language = {en} } @article{AlkamLahmer, author = {Alkam, Feras and Lahmer, Tom}, title = {A robust method of the status monitoring of catenary poles installed along high-speed electrified train tracks}, series = {Results in Engineering}, volume = {2021}, journal = {Results in Engineering}, number = {volume 12, article 100289}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.rineng.2021.100289}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211011-45212}, pages = {1 -- 8}, abstract = {Electric trains are considered one of the most eco-friendly and safest means of transportation. Catenary poles are used worldwide to support overhead power lines for electric trains. The performance of the catenary poles has an extensive influence on the integrity of the train systems and, consequently, the connected human services. It became a must nowadays to develop SHM systems that provide the instantaneous status of catenary poles in- service, making the decision-making processes to keep or repair the damaged poles more feasible. This study develops a data-driven, model-free approach for status monitoring of cantilever structures, focusing on pre-stressed, spun-cast ultrahigh-strength concrete catenary poles installed along high-speed train tracks. The pro-posed approach evaluates multiple damage features in an unfied damage index, which leads to straightforward interpretation and comparison of the output. Besides, it distinguishes between multiple damage scenarios of the poles, either the ones caused by material degradation of the concrete or by the cracks that can be propagated during the life span of the given structure. Moreover, using a logistic function to classify the integrity of structure avoids the expensive learning step in the existing damage detection approaches, namely, using the modern machine and deep learning methods. The findings of this study look very promising when applied to other types of cantilever structures, such as the poles that support the power transmission lines, antenna masts, chimneys, and wind turbines.}, subject = {Fahrleitung}, language = {en} } @phdthesis{Amiri, author = {Amiri, Fatemeh}, title = {Computational modelling of fracture with local maximum entropy approximations}, doi = {10.25643/bauhaus-universitaet.2631}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160719-26310}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {130}, abstract = {The key objective of this research is to study fracture with a meshfree method, local maximum entropy approximations, and model fracture in thin shell structures with complex geometry and topology. This topic is of high relevance for real-world applications, for example in the automotive industry and in aerospace engineering. The shell structure can be described efficiently by meshless methods which are capable of describing complex shapes as a collection of points instead of a structured mesh. In order to find the appropriate numerical method to achieve this goal, the first part of the work was development of a method based on local maximum entropy (LME) shape functions together with enrichment functions used in partition of unity methods to discretize problems in linear elastic fracture mechanics. We obtain improved accuracy relative to the standard extended finite element method (XFEM) at a comparable computational cost. In addition, we keep the advantages of the LME shape functions,such as smoothness and non-negativity. We show numerically that optimal convergence (same as in FEM) for energy norm and stress intensity factors can be obtained through the use of geometric (fixed area) enrichment with no special treatment of the nodes near the crack such as blending or shifting. As extension of this method to three dimensional problems and complex thin shell structures with arbitrary crack growth is cumbersome, we developed a phase field model for fracture using LME. Phase field models provide a powerful tool to tackle moving interface problems, and have been extensively used in physics and materials science. Phase methods are gaining popularity in a wide set of applications in applied science and engineering, recently a second order phase field approximation for brittle fracture has gathered significant interest in computational fracture such that sharp cracks discontinuities are modeled by a diffusive crack. By minimizing the system energy with respect to the mechanical displacements and the phase-field, subject to an irreversibility condition to avoid crack healing, this model can describe crack nucleation, propagation, branching and merging. One of the main advantages of the phase field modeling of fractures is the unified treatment of the interfacial tracking and mechanics, which potentially leads to simple, robust, scalable computer codes applicable to complex systems. In other words, this approximation reduces considerably the implementation complexity because the numerical tracking of the fracture is not needed, at the expense of a high computational cost. We present a fourth-order phase field model for fracture based on local maximum entropy (LME) approximations. The higher order continuity of the meshfree LME approximation allows to directly solve the fourth-order phase field equations without splitting the fourth-order differential equation into two second order differential equations. Notably, in contrast to previous discretizations that use at least a quadratic basis, only linear completeness is needed in the LME approximation. We show that the crack surface can be captured more accurately in the fourth-order model than the second-order model. Furthermore, less nodes are needed for the fourth-order model to resolve the crack path. Finally, we demonstrate the performance of the proposed meshfree fourth order phase-field formulation for 5 representative numerical examples. Computational results will be compared to analytical solutions within linear elastic fracture mechanics and experimental data for three-dimensional crack propagation. In the last part of this research, we present a phase-field model for fracture in Kirchoff-Love thin shells using the local maximum-entropy (LME) meshfree method. Since the crack is a natural outcome of the analysis it does not require an explicit representation and tracking, which is advantageous over techniques as the extended finite element method that requires tracking of the crack paths. The geometric description of the shell is based on statistical learning techniques that allow dealing with general point set surfaces avoiding a global parametrization, which can be applied to tackle surfaces of complex geometry and topology. We show the flexibility and robustness of the present methodology for two examples: plate in tension and a set of open connected pipes.}, language = {en} } @article{AmirinasabShamshirbandChronopoulosetal., author = {Amirinasab, Mehdi and Shamshirband, Shahaboddin and Chronopoulos, Anthony Theodore and Mosavi, Amir and Nabipour, Narjes}, title = {Energy-Efficient Method for Wireless Sensor Networks Low-Power Radio Operation in Internet of Things}, series = {electronics}, volume = {2020}, journal = {electronics}, number = {volume 9, issue 2, 320}, publisher = {MDPI}, doi = {10.3390/electronics9020320}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200213-40954}, pages = {20}, abstract = {The radio operation in wireless sensor networks (WSN) in Internet of Things (IoT)applications is the most common source for power consumption. Consequently, recognizing and controlling the factors affecting radio operation can be valuable for managing the node power consumption. Among essential factors affecting radio operation, the time spent for checking the radio is of utmost importance for monitoring power consumption. It can lead to false WakeUp or idle listening in radio duty cycles and ContikiMAC. ContikiMAC is a low-power radio duty-cycle protocol in Contiki OS used in WakeUp mode, as a clear channel assessment (CCA) for checking radio status periodically. This paper presents a detailed analysis of radio WakeUp time factors of ContikiMAC. Furthermore, we propose a lightweight CCA (LW-CCA) as an extension to ContikiMAC to reduce the Radio Duty-Cycles in false WakeUps and idle listening though using dynamic received signal strength indicator (RSSI) status check time. The simulation results in the Cooja simulator show that LW-CCA reduces about 8\% energy consumption in nodes while maintaining up to 99\% of the packet delivery rate (PDR).}, subject = {Internet der Dinge}, language = {en} } @phdthesis{Ashour, author = {Ashour, Mohammed}, title = {Electromechanics and Hydrodynamics of Single Vesicles and Vesicle Doublet Using Phase-Field Isogeometric Analysis}, doi = {10.25643/bauhaus-universitaet.6400}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230628-64003}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {175}, abstract = {Biomembranes are selectively permeable barriers that separate the internal components of the cell from its surroundings. They have remarkable mechanical behavior which is characterized by many phenomena, but most noticeably their fluid-like in-plane behavior and solid-like out-of-plane behavior. Vesicles have been studied in the context of discrete models, such as Molecular Dynamics, Monte Carlo methods, Dissipative Particle Dynamics, and Brownian Dynamics. Those methods, however, tend to have high computational costs, which limited their uses for studying atomistic details. In order to broaden the scope of this research, we resort to the continuum models, where the atomistic details of the vesicles are neglected, and the focus shifts to the overall morphological evolution. Under the umbrella of continuum models, vesicles morphology has been studied extensively. However, most of those studies were limited to the mechanical response of vesicles by considering only the bending energy and aiming for the solution by minimizing the total energy of the system. Most of the literature is divided between two geometrical representation methods; the sharp interface methods and the diffusive interface methods. Both of those methods track the boundaries and interfaces implicitly. In this research, we focus our attention on solving two non-trivial problems. In the first one, we study a constrained Willmore problem coupled with an electrical field, and in the second one, we investigate the hydrodynamics of a vesicle doublet suspended in an external viscous fluid flow. For the first problem, we solve a constrained Willmore problem coupled with an electrical field using isogeometric analysis to study the morphological evolution of vesicles subjected to static electrical fields. The model comprises two phases, the lipid bilayer, and the electrolyte. This two-phase problem is modeled using the phase-field method, which is a subclass of the diffusive interface methods mentioned earlier. The bending, flexoelectric, and dielectric energies of the model are reformulated using the phase-field parameter. A modified Augmented-Lagrangian (ALM) approach was used to satisfy the constraints while maintaining numerical stability and a relatively large time step. This approach guarantees the satisfaction of the constraints at each time step over the entire temporal domain. In the second problem, we study the hydrodynamics of vesicle doublet suspended in an external viscous fluid flow. Vesicles in this part of the research are also modeled using the phase-field model. The bending energy and energies associated with enforcing the global volume and area are considered. In addition, the local inextensibility condition is ensured by introducing an additional equation to the system. To prevent the vesicles from numerically overlapping, we deploy an interaction energy definition to maintain a short-range repulsion between the vesicles. The fluid flow is modeled using the incompressible Navier-Stokes equations and the vesicle evolution in time is modeled using two advection equations describing the process of advecting each vesicle by the fluid flow. To overcome the velocity-pressure saddle point system, we apply the Residual-Based Variational MultiScale (RBVMS) method to the Navier-Stokes equations and solve the coupled systems using isogeometric analysis. We study vesicle doublet hydrodynamics in shear flow, planar extensional flow, and parabolic flow under various configurations and boundary conditions. The results reveal several interesting points about the electrodynamics and hydrodynamics responses of single vesicles and vesicle doublets. But first, it can be seen that isogeometric analysis as a numerical tool has the ability to model and solve 4th-order PDEs in a primal variational framework at extreme efficiency and accuracy due to the abilities embedded within the NURBS functions without the need to reduce the order of the PDE by creating an intermediate environment. Refinement whether by knot insertion, order increasing or both is far easier to obtain than traditional mesh-based methods. Given the wide variety of phenomena in natural sciences and engineering that are mathematically modeled by high-order PDEs, the isogeometric analysis is among the most robust methods to address such problems as the basis functions can easily attain high global continuity. On the applicational side, we study the vesicle morphological evolution based on the electromechanical liquid-crystal model in 3D settings. This model describing the evolution of vesicles is composed of time-dependent, highly nonlinear, high-order PDEs, which are nontrivial to solve. Solving this problem requires robust numerical methods, such as isogeometric analysis. We concluded that the vesicle tends to deform under increasing magnitudes of electric fields from the original sphere shape to an oblate-like shape. This evolution is affected by many factors and requires fine-tuning of several parameters, mainly the regularization parameter which controls the thickness of the diffusive interface width. But it is most affected by the method used for enforcing the constraints. The penalty method in presence of an electrical field tends to lock on the initial phase-field and prevent any evolution while a modified version of the ALM has proven to be sufficiently stable and accurate to let the phase-field evolve while satisfying the constraints over time at each time step. We show additionally the effect of including the flexoelectric nature of the Biomembranes in the computation and how it affects the shape evolution as well as the effect of having different conductivity ratios. All the examples were solved based on a staggered scheme, which reduces the computational cost significantly. For the second part of the research, we consider vesicle doublet suspended in a shear flow, in a planar extensional flow, and in a parabolic flow. When the vesicle doublet is suspended in a shear flow, it can either slip past each other or slide on top of each other based on the value of the vertical displacement, that is the vertical distance between the center of masses between the two vesicles, and the velocity profile applied. When the vesicle doublet is suspended in a planar extensional flow in a configuration that resembles a junction, the time in which both vesicles separate depends largely on the value of the vertical displacement after displacing as much fluid from between the two vesicles. However, when the vesicles are suspended in a tubular channel with a parabolic fluid flow, they develop a parachute-like shape upon converging towards each other before exiting the computational domain from the predetermined outlets. This shape however is affected largely by the height of the tubular channel in which the vesicle is suspended. The velocity essential boundary conditions are imposed weakly and strongly. The weak implementation of the boundary conditions was used when the velocity profile was defined on the entire boundary, while the strong implementation was used when the velocity profile was defined on a part of the boundary. The strong implementation of the essential boundary conditions was done by selectively applying it to the predetermined set of elements in a parallel-based code. This allowed us to simulate vesicle hydrodynamics in a computational domain with multiple inlets and outlets. We also investigate the hydrodynamics of oblate-like shape vesicles in a parabolic flow. This work has been done in 2D configuration because of the immense computational load resulting from a large number of degrees of freedom, but we are actively seeking to expand it to 3D settings and test a broader set of parameters and geometrical configurations.}, subject = {Isogeometrische Analyse}, language = {en} } @phdthesis{Chan, author = {Chan, Chiu Ling}, title = {Smooth representation of thin shells and volume structures for isogeometric analysis}, doi = {10.25643/bauhaus-universitaet.4208}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200812-42083}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {162}, abstract = {The purpose of this study is to develop self-contained methods for obtaining smooth meshes which are compatible with isogeometric analysis (IGA). The study contains three main parts. We start by developing a better understanding of shapes and splines through the study of an image-related problem. Then we proceed towards obtaining smooth volumetric meshes of the given voxel-based images. Finally, we treat the smoothness issue on the multi-patch domains with C1 coupling. Following are the highlights of each part. First, we present a B-spline convolution method for boundary representation of voxel-based images. We adopt the filtering technique to compute the B-spline coefficients and gradients of the images effectively. We then implement the B-spline convolution for developing a non-rigid images registration method. The proposed method is in some sense of "isoparametric", for which all the computation is done within the B-splines framework. Particularly, updating the images by using B-spline composition promote smooth transformation map between the images. We show the possible medical applications of our method by applying it for registration of brain images. Secondly, we develop a self-contained volumetric parametrization method based on the B-splines boundary representation. We aim to convert a given voxel-based data to a matching C1 representation with hierarchical cubic splines. The concept of the osculating circle is employed to enhance the geometric approximation, where it is done by a single template and linear transformations (scaling, translations, and rotations) without the need for solving an optimization problem. Moreover, we use the Laplacian smoothing and refinement techniques to avoid irregular meshes and to improve mesh quality. We show with several examples that the method is capable of handling complex 2D and 3D configurations. In particular, we parametrize the 3D Stanford bunny which contains irregular shapes and voids. Finally, we propose the B´ezier ordinates approach and splines approach for C1 coupling. In the first approach, the new basis functions are defined in terms of the B´ezier Bernstein polynomials. For the second approach, the new basis is defined as a linear combination of C0 basis functions. The methods are not limited to planar or bilinear mappings. They allow the modeling of solutions to fourth order partial differential equations (PDEs) on complex geometric domains, provided that the given patches are G1 continuous. Both methods have their advantages. In particular, the B´ezier approach offer more degree of freedoms, while the spline approach is more computationally efficient. In addition, we proposed partial degree elevation to overcome the C1-locking issue caused by the over constraining of the solution space. We demonstrate the potential of the resulting C1 basis functions for application in IGA which involve fourth order PDEs such as those appearing in Kirchhoff-Love shell models, Cahn-Hilliard phase field application, and biharmonic problems.}, subject = {Modellierung}, language = {en} }