@phdthesis{Wolkowicz2008, author = {Wolkowicz, Christian}, title = {Ein Beitrag zur Evolution des Tensegrity-Konzeptes - Zur Erh{\"o}hung der Steifigkeit von Seil-Stab-Systemen}, doi = {10.25643/bauhaus-universitaet.1473}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20090417-14659}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2008}, abstract = {In der vorliegenden Arbeit werden auf Basis des Tensegrity-Konzeptes Strukturen entwickelt und vorgestellt, welche durch einen signifikanten Steifigkeitszuwachs in der Lage sind, die Anforderungen an die Gebrauchstauglichkeit von Tragwerken zu erf{\"u}llen. Selbstverankerte Strukturen mit aufgel{\"o}sten Druckst{\"a}ben werden als Seil-Stab-Systeme bezeichnet und sind alleiniger Gegenstand aller angestellten Betrachtungen. Tensegrity-Strukturen sollen eine Untergruppe der Seil-Stab-Systeme darstellen, deren symptomatische Eigenschaft eine sich im Tensegrity-Zustand befindliche Geometrie ist. Einer Definition des Tensegrity-Zustandes folgt ein {\"U}berblick {\"u}ber die zur Untersuchung von Seil-Stab-Systemen notwendigen Berechnungsalgorithmen. Der Kern der Arbeit besch{\"a}ftigt sich zun{\"a}chst mit dem Einfluss der Geometrie auf die Empfindlichkeit von Seil-Stab-Systemen gegen{\"u}ber unvermeidlichen Herstellungstoleranzen sowie dem Einfluss von Topologie, Vorspannung, lokaler Steifigkeit der Elemente und Geometrie auf die Steifigkeit dieser Systeme. Darauf aufbauend wird eine M{\"o}glichkeit gezeigt, die Steifigkeit von beweglichen Seil- Stab-Systemen merklich zu erh{\"o}hen, ohne die Strukturen durch zus{\"a}tzliche Elemente oder Verbindungen optisch zu ver{\"a}ndern. Der zu erzielende Steifigkeitszuwachs wird mittels Vergleichrechnungen und durchgef{\"u}hrten Belastungsversuchen verifiziert.}, subject = {Tensegrity }, language = {de} } @misc{Kramer2005, type = {Master Thesis}, author = {Kramer, Roman}, title = {Der konstruktive Entwurf von Stabnetzwerken am Beispiel des Naturtheaters Gr{\"o}tzingen}, doi = {10.25643/bauhaus-universitaet.639}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-6397}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2005}, abstract = {Im Ergebnis dieser Arbeit ist es gelungen, die Form der {\"U}berdachung des Frei-lufttheaters in Gr{\"o}tzingen als Stabnetzschale zu generieren und in einer Vorbe-messung konstruktiv durchzubilden. Im iterativen Prozess der Formfindung bilden Form, Last, Auflager und Tragver-halten eine Einheit, welche die letztendliche Form eines Tragwerks bestimmt. Kommt es auf Effizienz, Leichtigkeit und große Spannweiten an, so ist die Form eines Tragwerks dem gew{\"u}nschten Beanspruchungszustand anzupassen. Die Form sollte somit die Folge des Sollkraftzustandes sein und nicht umgekehrt. W{\"a}hrend der Formfindung in DOMEdesign ist es nicht gelungen, die Schalen-form {\"u}ber ein Netz mit quadratischen Maschen zu erzeugen, da sich die Berech-nung immer an derselben Stelle der Generierung festgefahren hat. Die Ursache hierf{\"u}r kann durch die Anzahl der Unbekannten je Knoten w{\"a}hrend Iterations-schritte in der Berechnung erkl{\"a}rt werden. Die genaue Form wurde durch die Verwendung eines Hexagonnetzes realisiert. Vorher musste das Netz jedoch mittels AutoCad in die geneigte Lage gedreht werden. Den entscheidenden Ein-fluss f{\"u}r die entstehende Form haben die Gr{\"o}ßen der Radien des ebenen Aus-gangsnetzes. Je kleiner der Radius des Randes, desto schlanker und filigraner bildet sich die Form der Schale aus. Als sehr positives Programmtool soll die Im- und Exportfunktion von DOMEdesign erw{\"a}hnt werden. Mit deren Hilfe kann jede Konstruktion problemlos als dxf-File in CAD - Programmen bearbeitet und wieder importiert werden. Die {\"U}berf{\"u}hrung der Netztopologie in eine dreieckige Vermaschung ist im Pro-gramm AutoCad durchgef{\"u}hrt worden. Hierzu war es notwendig, jeden zweiten Punkt eines Hexagons zu fangen und durch Verbinden, Dreiecke zu erzeugen. Nach der ersten Vorbemessung schien die Entscheidung sinnvoll, aufgrund der zunehmenden Normalkr{\"a}fte zum Auflager hin, eine Staffelung der Stabquer-schnitte vorzusehen. Die Querschnitte variieren von 120/70 (in Schalenmitte) bis 180/70 (am Auflager). Am {\"U}bergang zweier Stabgr{\"o}ßen werden gevoutete St{\"a}be angeordnet. Im Rahmen dieser Vorbemessung stellte sich heraus, dass sich eine reine Schalentragwirkung (nur Druckkr{\"a}fte) in der gefundenen Konstruktion nicht zu 100 \% einstellt. Grund daf{\"u}r ist der Zusammenhang von Netztopologie, Ge-l{\"a}ndeneigung- bzw. Lage der Lagerpunkte und Art der Beanspruchung. Deshalb treten in der Stabnetzschale vereinzelt Zugkr{\"a}fte auf, welche vom Dreieck hin zum Hexagon abnehmen. Im maßgebenden Lastfall bewegen sich die Betr{\"a}ge der Verformungen in einem tolerierbaren Bereich von bis zu maximal 3,7 cm, welche die Zul{\"a}ssigen von maximal 13,3 cm deutlich unterschreiten. Die Fortschritte durch Computer - orientierte - Verfahren zur Formfindung und Bemessung haben die Formvielfalt beim Bau von doppelt gekr{\"u}mmten Fl{\"a}chen aus Stahl und Glas erweitert. Die automatisierte Fertigung erlaubt es, sich von den bisher immer geforderten gleichen Stabl{\"a}ngen und gleichen Knotenausbil-dungen loszul{\"o}sen. Um die gefundene Schalenform konstruktiv umzusetzen, ist es notwendig einen Knoten zu finden, welcher den Anspr{\"u}chen in Bezug auf Stabverdrehung, Glasauflagerung und Schalenkr{\"u}mmung gen{\"u}gt. Hierbei gibt es eine Vielzahl an m{\"o}glichen Konstruktionen. Da an bestimmten Knoten große Un-terschiede zwischen Vertikalwinkeln auftreten, fiel in dieser Arbeit die Entschei-dung zu Gunsten eines Zylinderknotens, dessen lokale Geometrie durch die unterschiedlichen Stabenden realisiert wird. Der Knoten selbst {\"u}bernimmt nur die Einstellung der Horizontalwinkel. Die Verbindung zwischen Stab und Knoten wird mittels zweier Schrauben, die {\"u}bereinander und senkrecht zur Knotenachse aus-gerichtet sind, hergestellt. Dazu wird an den Stabenden ein 1 cm starkes Blech angeschweißt, wodurch die Schrauben vom Knoten her vorgespannt werden k{\"o}nnen. Die Oberkante des Knotens darf dabei nicht {\"u}ber die Staboberseiten herausragen, da sonst keine durchgehende Auflage der Glasscheiben m{\"o}glich ist.}, subject = {Gitterschale}, language = {de} } @phdthesis{Genzel2006, author = {Genzel, Elke}, title = {Zur Geschichte der Konstruktion und der Bemessung von Tragwerken aus faserverst{\"a}rkten Kunststoffen 1950-1980}, doi = {10.25643/bauhaus-universitaet.802}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20070226-8468}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2006}, abstract = {Die Arbeit befasst sich mit der Anwendung faserverst{\"a}rkter Kunststoffe f{\"u}r Tragwerke des Hochbaus. Es wird ein geschichtlicher {\"U}berblick {\"u}ber die Jahre 1950 bis 1980 gegeben und dabei herausgestellt, wie es 1. zur Einf{\"u}hrung des bis 1950 unbekannten Werkstoffes im Bauwesen kommen konnte 2. welche Personen und Institute maßgeblich an der Einf{\"u}hrung und Entwicklung des Bauens mit FVK beteiligt waren 3. welche Tragwerke verwendet wurden 4. wie die Pioniere diese Tragwerke bemaßen 5. welche konstruktiven Besonderheiten sich mit der Verwendung von FVK in der Tragstruktur ergaben Nach einer Einf{\"u}hrung werden im Kapitel 2 die wichtigsten Faktoren der Entwicklung von Tragwerken aus GFK er{\"o}rtert. Im Kapitel 3 wird die Technik der Fertigung von GFK-Teilen und deren F{\"u}gung beschrieben. Im Kapitel 4 werden die Tragwerke beschrieben und einzelne Tragwerkstypen eingehend er{\"o}rtert. Im Kapitel 5 werden die Bemessungskonzepte und deren Entwicklung er{\"o}rtert. In der Bilanz werden die Faktoren aufgez{\"a}hlt, die zum Abklingen des Bauens mit FVK in der Tragstruktur gef{\"u}hrt haben. Die Arbeit wird erg{\"a}nzt durch eine ca. 40-seitige Tabelle in der die gebauten Tragwerke in Abh{\"a}ngigkeit von den technischen Parametern Spannweiten und Lasten dargestellt werden. Im Anhang werden 10 exemplarische Bauten detailliert er{\"o}rtert.}, subject = {Tragwerk}, language = {de} }